

NAME: Fareeha Jehangiri
ID#: 16051
MODULE: Bachelors {Software Engineering}
SEMESTER: 2nd
SECTION: A
SUBJECT: Object Oriented Programming
INSTRUCTOR: M. Ayub Khan
DATE: 29/JUNE/2020

Q1. a. Why access modifiers are used in java, explain in detail Private

and Default access modifiers?

ANSWER:

Java Access Modifiers – Public, Private, Protected & Default:

You must have seen public, private and protected keywords while practising java

programs, these are called access modifiers. An access modifier restricts the

access of a class, constructor, data member and method in another class. In java

we have four access modifiers:

1. default

2. private

3. protected

4. Public

Private access modifiers:

Private: The private access modifier is specified using the

keyword private. The methods or data members declared as private are

accessible only within the class in which they are declared. Any

other class of same package will not be able to access these members.

Top level Classes or interface can not be declared as private because

private means “only visible within the enclosing class”.

protected means “only visible within the enclosing class and any

subclasses”

Hence these modifiers in terms of application to classes, they apply

only to nested classes and not on top level classes.

Default access modifiers:

Default: When no access modifier is specified for a class, method or data member

– It is said to be having the default access modifier by default.

The data members, class or methods which are not declared using any access

modifiers i.e. having default access modifier are accessible only within the same

package.

When we do not mention any access modifier, it is called default access

modifier. The scope of this modifier is limited to the package only. This

means that if we have a class with the default access modifier in a

package, only those classes that are in this package can access this class.

No other class outside this package can access this class. Similarly, if we

have a default method or data member in a class, it would not be visible in

the class of another package. Let’s see an example to understand this.

 b. Write a specific program of the above-mentioned access modifiers

in java.

ANSWER:

Program in NetBeans with output:

Q2. a. Explain in detail Public and Protected access modifiers?

ANSWER:

Public Access Modifier:

A class, method, constructor, interface, etc. declared public can be

accessed from any other class. Therefore, fields, methods, blocks

declared inside a public class can be accessed from any class belonging

to the Java Universe.

However, if the public class we are trying to access is in a different

package, then the public class still needs to be imported. Because of

class inheritance, all public methods and variables of a class are

inherited by its subclasses.

Protected Access Modifier:

Variables, methods, and constructors, which are declared protected in

a superclass can be accessed only by the subclasses in other package or

any class within the package of the protected members' class.

The protected access modifier cannot be applied to class and

interfaces. Methods, fields can be declared protected, however

methods and fields in a interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method

or variable, while preventing a nonrelated class from trying to use it.

 b. Write a specific program of the above-mentioned access modifiers

in java.

ANSWER:

Program in NetBeans with output:

Q3. a. What is inheritance and why it is used, discuss in detail?

ANSWER:

Inheritance:

Inheritance is a mechanism in which one class acquires the property of

another class. For example, a child inherits the traits of his/her parents.

With inheritance, we can reuse the fields and methods of the existing

class. Hence, inheritance facilitates Reusability and is an important

concept of OOPs.

Types of Inheritance:

There are Various types of inheritance in Java:

Single Inheritance:

In Single Inheritance one class extends another class (one class only).

In above diagram, Class B extends only Class A. Class A is a super class

and Class B is a Sub-class.

Multiple Inheritance:

 In Multiple Inheritance, one class extending more than one class.

Java does not support multiple inheritance.

As per above diagram, Class C extends Class A and Class B both.

Multilevel Inheritance:

In Multilevel Inheritance, one class can inherit from a derived class.

Hence, the derived class becomes the base class for the new class.

As per shown in diagram Class C is subclass of B and B is a of subclass

Class A.

Hierarchical Inheritance:

In Hierarchical Inheritance, one class is inherited by many sub classes

As per above example, Class B, C, and D inherit the same class A.

Hybrid Inheritance:

Hybrid inheritance is a combination of Single and Multiple

inheritance.

As per above example, all the public and protected members of Class

A are inherited into Class D, first via Class B and secondly via Class C.

Note: Java doesn't support hybrid/Multiple inheritance

Inheritance in Java

JAVA INHERITANCE: is a mechanism in which one class acquires the

property of another class. In Java, when an "Is-A" relationship exists

between two classes, we use Inheritance. The parent class is called a
super class and the inherited class is called a subclass. The

keyword extends is used by the sub class to inherit the features of

super class.

Inheritance is important since it leads to the reusability of code

 b. Write a program using Inheritance class on Animal in java.

ANSWER:

Program in NetBeans with output:

 Q4. a. What is polymorphism and why it is used, discuss in detail?

ANSWER:

Polymorphism:

Polymorphism has 2 requirements:

– A subclass method must override super-class method. Only

super-class method with public and protected scope are

eligible for overriding.

– A super class reference is used to invoke the method.

Example

– class Employee extends Office

– {

– Office obj = new Employee();

– obj.print();

–

– }

– Here obj polymorphically invokes the print() method.

 b. Write a program using polymorphism in a class on Employee in

java.

ANSWER:

Program in NetBeans with output:

Q5. a. Why abstraction is used in OOP, discuss in detail?

ANSWER:

Abstraction:

Abstraction is selecting data from a larger pool to show only the

relevant details of the object to the user. Abstraction “shows” only the

essential attributes and “hides” unnecessary information. It helps to

reduce programming complexity and effort. It is one of the most

important concepts of OOPs.

In simplest words, you can define abstraction as which captures

only those details about a Java object that are relevant to the

current perspective.

For example, a HashMap stores key-value pairs. It provides you

two methods get() and put() methods to store and retrieve

key-value pairs from map. It is, in fact, the only information you

will need if you want to use the map in your application. How it

works inside, you are not required to know it to use it. This is very

much example of abstraction in Java.

 b. Write a program on abstraction in java.

ANSWER:

Program in NetBeans with output:

