
NAME : MASOOD SAID

ID : 13723

SEMESTER : 6th FINAL TERM

PAPER : Software Verification and validation

INSTRUCTOR : ZAIN SHAUKAT

Q1. MCQS

ANS :

1) b

2) d

3) C

4) d

5) d

6) a

7) b

8) c

9) a

10) c

Q2. Explain Black Box testing and White Box testing in detail.

ANS : BLACK BOX TESTING :

Black Box Testing is a software testing method in which the internal

structure/ design/ implementation of the item being tested is NOT

known to the tester.

It is also called as Behavioral/Specification-Based/Input-Output Testing

This can be applied to every level of software testing such as Unit,

Integration, System and Acceptance Testing.

Testers create test scenarios/cases based on software requirements

and specifications. So it is AKA Specification Based Testing.

The tester passes input data to make sure whether the actual output

matches the expected output. So it is AKA Input-Output Testing.

Types of Black Box Testing:

Functionality Testing: In simple words, what the system actually does is

functional testing

Non-functionality Testing: In simple words, how well the system

performs is non-functionality testing

Black Box Testing Techniques:

1)Equivalence Partitioning

2)Boundary Value Analysis

3)Decision Table

4)State Transition

Equivalence Partitioning: Equivalence Partitioning is also known as

Equivalence Class Partitioning. In equivalence partitioning, inputs to the

software or system are divided into groups that are expected to exhibit

similar behavior, so they are likely to be proposed in the same way.

Boundary Value Analysis: Boundary value analysis (BVA) is based on

testing the boundary values of valid and invalid partitions. The Behavior

at the edge of each equivalence partition is more likely to be incorrect

than the behavior within the partition, so boundaries are an area where

testing is likely to yield defects.

Decision Table: Decision Table is aka Cause-Effect Table. This test

technique is appropriate for functionalities which has logical

relationships between inputs (if-else logic). In Decision table technique,

we deal with combinations of inputs. To identify the test cases with

decision table, we consider conditions and actions.

State Transition: Using state transition testing, we pick test cases from

an application where we need to test different system transitions. We

can apply this when an application gives a different output for the same

input, depending on what has happened in the earlier state.

WHITE BOX TESTING :

White Box Testing is a software testing method in which the internal

structure/ design/ implementation of the item being tested is known to

the tester.

It is also called as Glass Box, Clear Box, Structural Testing.

Types of White Box Testing

1)Unit Testing

2)Static Analysis

3)Dynamic Analysis

4)Statement Coverage

Unit Testing

Unit Testing is one of the basic steps, which is performed in the early

stages. Most of the testers prefer performing to check if a specific unit

of code is functional or not. Unit Testing is one of the common steps

performed for every activity because it helps in removing basic and

simple errors.

Static Analysis

As the term says, the step involves testing some of the static elements

in the code. The step is conducted to figure out any of the possible

defects or errors in the application code.

The static analysis is an important step because it helps in filtering

simple errors in the initial stage of the process.

Dynamic Analysis

Dynamic Analysis is the further step of static analysis in general path

testing. Most of the people prefer performing both static and dynamic

at the same time. The dynamic analysis helps in analyzing and executing

the source code depending on the requirements. The final stage of the

step helps in analyzing the output without affecting the process.

Statement Coverage

Statement coverage is one of the pivotal steps involved in the testing

process. It offers a whole lot of advantages in terms of execution from

time to time.

The process takes place to check whether all the functionalities are

working or not. Most of the testers use the step because it is designed

to execute all the functions atleast once. As the process starts, we will

be able to figure out the possible errors in the web application.

Q3. Find the cyclomatic Complexity and draw the Graph of this code?

ANS : CYCLOMATIC COMPLEXITY:-

CYCLOMATIC COMPLEXITY is a software metric used to measure the

complexity of a program. It is a quantitative measure of independent

paths in the source code of the program. Independent path is defined

as a path that has at least one edge which has not been traversed

before in any other paths. Cyclomatic complexity can be calculated with

respect to functions, modules, methods or classes within a program.

This metric was developed by Thomas J. McCabe in 1976 and it is based

on a control flow representation of the program. Control flow depicts a

program as a graph which consists of Nodes and Edges.

In the graph, Nodes represent processing tasks while edges represent

control flow between the nodes.

Flow graph notation for a program:

Flow Graph notation for a program defines several nodes connected

through the edges. Below are Flow diagrams for statements like if-else,

While, until and normal sequence of flow.

Consider three software items: Program-X, Control Flow Diagram of

Program-Y and Control Flow Diagram of Program-Z as shown below

The values of McCabe’s Cyclomatic complexity of Program-X, Program-Y

and Program-Z respectively are

(A) 4, 4, 7

(B) 3, 4, 7

(C) 4, 4, 8

(D) 4, 3, 8

Explanation:

The cyclomatic complexity of a structured program[a] is defined

with reference to the control flow graph of the program, a directed

graph containing the basic blocks of the program, with an edge

between two basic blocks if control may pass from the first to the

second. The complexity M is then defined as.

 M = E − N + 2P,

Where

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

 P = the number of connected components

Q4. What is Z specification and why it is used for, also give some example

this code written in Z specification?

ANS :

The Z notation is a formal specification language used for describing

and modelling computing systems. It is targeted at the clear

specification of computer programe and computer-based systems in

general

Usage and notation

Z is based on the standard mathematical notation used in axiomatic set

theory, lambda calculus, and first-order predicate logic. All expressions

in Z notation are typed, thereby avoiding some of the paradoxes of

naive set theory. Z contains a standardized catalogue (called the

mathematical toolkit) of commonly used mathematical functions and

predicates, defined using Z itself.

Although Z notation (just like the APL language, long before it) uses

many non-ASCII symbols, the specification includes suggestions for

rendering the Z notation symbols in ASCII and in LaTeX. There are also

Unicode.

 THE END

