Mid Term Summer 2020
Date: 20 August 2020
Multivariate Calculus
Time Allowed: Four Hours

ID 13033
Q.1.If $(x+y i) / i=(7+9 i)$, where x and y are real, what is the value of $(x+y i)(x-y i) ?$

Q.2. Find the values of x and y in the following equation, given further that $x \in R, y \in R$.
$(x+i y)(2+i)=3-i$

Q.3. Solve the equation $2 z^{2}-2 i z-5=0, z \in C$.

Q.4. Express $4-\sqrt{5} i$ in polar form.

Q.5. Find the limit $\lim _{z \rightarrow 8} \frac{2 z^{2}-17 z+8}{8-z}$

Q.6.

Differentiate
(i). $\quad f(x)=(\ln x)^{4}$
(ii). $\quad g(x)=x^{2} \cdot \ln x$
(2NOG:-
pent1) Differatiate: (1) $f(x)=(\ln x)^{4}$
Differentiate whet x :

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x}(\ln x)^{4} \\
& =4(\ln x)^{4-1} \frac{d}{d x}(\ln x) \\
& =4\left(\ln x^{3} \frac{1}{x}\right. \\
f^{\prime}(x) & =\frac{4}{x}(\ln x)^{3}
\end{aligned}
$$

Part(ii)
Disferekte wit tx

$$
\begin{aligned}
& \frac{d}{d x}\left(g(x)=\frac{d}{d x}\left(x^{2} \ln x\right)\right. \\
& g^{\prime}(x)=x^{2} \frac{d}{d x} \ln x+\ln x \frac{d x^{2}}{d x} \\
& =x^{2} \frac{1}{x}+\ln x \cdot 2 x^{2-1} \frac{d x}{d x} \\
& =x+\ln x \cdot 2 x \\
& =x+2 x \ln x \\
& =x(1+2 \ln x) \\
& =x(1+2 \ln x) \text { Ans }
\end{aligned}
$$

