
Digital Logic & Design (Lab)

Name: Changaiz khan

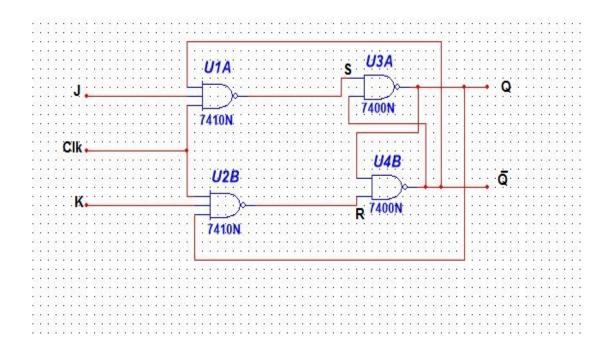
ID: 13206

Q.1 Design and verify the logic circuit for the following:

(a) Half adder using logic gates

INPUTS		OUTPUTS		
A	В	SUM	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

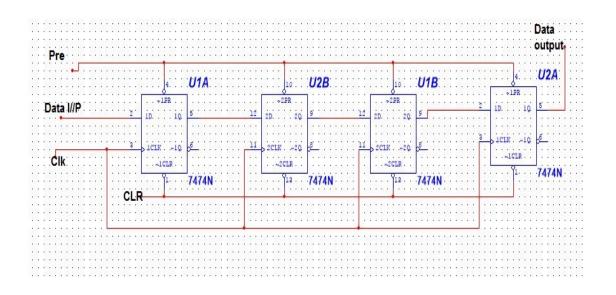
From the equation, it is clear that this 1-bit adder can be easily implemented with the help of EXOR Gate for the output 'SUM' and an AND Gate for the carry. Take a look at the implementation below


(b) Half-subtract or using logic gate

Truth Table

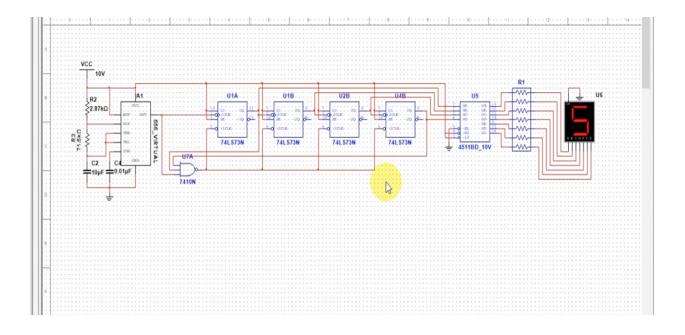
The half subtractor truth table explanation can be done by using the logic gates like EX-OR logic gate and AND gate operation followed by NOT gate.

First Bit	Second Bit	Difference (EX-OR Out)	Borrow (NAND Out)
0	0	0	0
1	0	1	0
0	1	1	1
1	1	0	0


(c) J K Flip flop

The Truth Table for the JK Function

	Clock	Inj	put	Out	tput	Description
	Clk	J	K	Q	Q	Description
	X	0	0	1	0	Memory
same as for the		0	0	1	no change	
Jk Latch	_↑_	0	1	1	0	Reset Q » 0
	X	0	1	0	1	
	↑	1	0	0	1	Set Q » 1
	X	1	0	1	0	
toggle	_↑_		Tagala			
action	_↓_	1	1	1	0	Toggle


(d) Serial in-serial Out shift register

TRUTH TABLE:

CLK	Serial in	Serial out
1	1	0
2	0	0
3	0	0
4	1	1
5	X	0
6	X	0
7	X	1

(e) Synchronous BCD Counter

