Assignment
Date: 26/06/2020

Course Details

Course Title:	Electric Power Distribution and Utilization	Module:	$4^{\text {th }}$ (B Tech)
Instructor:	Engr. Waleed Jan	Total Marks:	50

Student Details

Name: $\quad \underline{\text { Muhammad Shayan }} \quad \underline{15085}$

Note: Draw neat diagram where necessary. Assume missing details if required.

Q1.	A DC distributor XY, which is 2 wired, 500 m long, is fed from both ends at 230 V . Various loads of $10 \mathrm{~A}, 40 \mathrm{~A}, 30 \mathrm{~A}$ and 40 A are tapped at distances of $100 \mathrm{~m}, 250 \mathrm{~m}, 350 \mathrm{~m}$ and 450 m from the end X respectively. If the area of cross-section of distributor conductor is $2 \mathrm{~cm}^{2}$, find the minimum consumer voltage. Take the value of resistivity $1.5 \times 10^{-5} \Omega \mathrm{~cm}$		Marks 10
Q2.	A DC distributor AB, which is 2 wired, 3 km long, supplies loads of 150A, 200A, 250A and 100A situated $500 \mathrm{~m}, 1300 \mathrm{~m}, 2300 \mathrm{~m}$ and 3000 m from the supply point A. The resistance of each conductor is $0 \cdot 02 \Omega$ per 1000 m . Calculate the potential difference at each load point if a p.d. of 400 V is maintained at point A .		Marks 10
Q3.	A D.C. distribution system, which is 3-wired, is supplying a load of 7Ω resistance across the positive outer and neutral and a load of 9Ω resistance across negative outer and neutral at the far end of the distributor. The resistance of each conductor is $0 \cdot 2 \Omega$. If the voltage between any outer and neutral at the load end is to be kept at 260 V , find the voltages at the feeding end.		Marks 10
Q4.	(a)	What will happen if the insulating material used for underground cable is hygroscopic and has low dielectric strength?	Marks 05
	(b)	Pure rubber cannot be used as an insulating material for underground cable. Justify this statement.	Marks 05
Q5.	(a)	In Direct laying method of underground cable, the maintenance cost is high. Justify this statement.	Marks 05
	(b)	The Solid system used for laying of underground cable is expensive as compared to direct laid system. Justify this statement.	Marks 05

Answer Sheet

Q1:

A DC distributor XY, which is 2 wired, 500 m long, is fed from both ends at 230V. Various loads of $10 \mathrm{~A}, 40 \mathrm{~A}, 30 \mathrm{~A}$ and 40 A are tapped at distances of $100 \mathrm{~m}, 250 \mathrm{~m}, 350 \mathrm{~m}$ and 450 m from the end X respectively. If the area of cross-section of distributor conductor is 2 cm 2 , find the minimum consumer voltage. Take the value of resistivity $1 \cdot 5 \times 10-5 \Omega \mathrm{~cm}$

Ans:

Solution

Resistance of 1 m length of distributer

$$
=2 \times \frac{1.5 \times 10^{-5} \times 100}{1}=3 \times 10^{-3}
$$

Resistance of section $=\mathrm{AC}$, Rac $=\left(3 \times 10^{-3}\right) 100=0.3 \Omega$
Resistance of section $=\mathrm{CD}, \operatorname{Rcd}=\left(3 \times 10^{-3}\right) 150=0.4 \Omega$
Resistance of section $=$ DE, Rde $=\left(3 \times 10^{-3}\right) 100=0.3 \Omega$
Resistance of section $=\mathrm{EF}$, Ref $=\left(3 \times 10^{-3}\right) 100=0.3 \Omega$
Resistance of section $=\mathrm{FB}, \mathrm{Rfb}=\left(3 \times 10^{-3}\right) 100=0.3 \Omega$
Voltage at $\mathrm{Y}=$ voltage at $\mathrm{X}-$ drop over length XY

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Y}}=\left[\mathrm{V}_{\mathrm{X}}-\mathrm{I}_{\mathrm{A}} \mathrm{R}_{\mathrm{AC}}+\left(\mathrm{I}_{\mathrm{A}}-20\right) \mathrm{R}_{\mathrm{CD}}+\left(\mathrm{I}_{\mathrm{A}}-60\right) \mathrm{R}_{\mathrm{DE}}+\left(\mathrm{I}_{\mathrm{A}}-110\right) \mathrm{R}_{\mathrm{EF}}+\left(\mathrm{I}_{\mathrm{A}}-140\right) \mathrm{R}_{\mathrm{FB}}\right] \\
& 230=230-\left[0.3 \mathrm{I}_{\mathrm{A}}+0.4\left(\mathrm{I}_{\mathrm{A}}-20\right)+0.3\left(\mathrm{I}_{\mathrm{A}}-60\right)+0.3\left(\mathrm{I}_{\mathrm{A}}-110\right)+0.3\left(\mathrm{I}_{\mathrm{A}}-140\right)\right] \\
&=230-\left(1.6 \mathrm{I}_{\mathrm{A}}-12.58\right)
\end{aligned}
$$

Or $\quad 1.6 \mathrm{I}_{\mathrm{A}}=12.58$

$$
\mathrm{I}_{\mathrm{A}}=12.58 /-1.6=7.862 \mathrm{~A}
$$

Knowing the value of
I_{A} current in any section can be determined thus current in section $\mathrm{Cd}, \mathrm{I}_{\mathrm{CD}}=\mathrm{I}_{\mathrm{A}}-20=7.862-20$ $=-12.138 \mathrm{~A}$ from C to D

$$
\mathrm{I}_{\mathrm{DE}}=\mathrm{I}_{\mathrm{A}}-60=7.682-60=-52.138 \mathrm{~A} \text { from } \mathrm{D} \text { to } \mathrm{E}
$$

Current in section EF, $\mathrm{I}_{\mathrm{EF}}=\mathrm{I}_{\mathrm{A}}-110=7.862-110=-102.138 \mathrm{~A}$ from E to F
Current in section $\mathrm{FB}, \mathrm{I}_{\mathrm{FB}}=\mathrm{I}_{\mathrm{A}}-140=7.862-140=-132.138 \mathrm{~A}$ From F to B
The actual distribution of currents in the various sections of the distributors
It is clear that current are coming to the load point E from both sides i.e From D
:. Minimum consumer voltage

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}} \mathrm{~V}_{\mathrm{A}^{-}}\left(\mathrm{I}_{\mathrm{AC}} \mathrm{R}_{\mathrm{AC}}+\mathrm{I}_{\mathrm{CD}} \mathrm{R}_{\mathrm{Cd}}+\mathrm{I}_{\mathrm{DE}} \mathrm{R}_{\mathrm{DE}}\right. \\
& \quad=230-(7.682 \times 0.3+7.862 \times 0.4+7.862 \times 0.3) \\
& \quad=230-7.682 \\
& \quad=-222.318 \mathrm{~V} \text { Ans. }
\end{aligned}
$$

Q2:
A DC distributor AB, which is 2 wired, 3 km long, supplies loads of 150A, 200A, 250A and 100A Situated $500 \mathrm{~m}, 1300 \mathrm{~m}, \mathbf{2 3 0 0} \mathrm{~m}$ and 3000 m from the supply point A. The resistance of each conductor is $0 \bullet 02 \Omega$ per 1000 m . Calculate the potential difference at each load point if a p.d. of 400 V is maintained at point A .

Ans:

Required data:

Potential difference of each load $=$?

Solution

The single line diagram of distributer with its topped current.

Resistance of section $\mathrm{A}_{\mathrm{C}}, \mathrm{R}_{\mathrm{AC}}$
$\mathrm{A}_{\mathrm{C}}, \mathrm{R}_{\mathrm{AC}}=0.04 \times 500 / 1000$
$=0.04 \times 0.5$
$\mathrm{A}_{\mathrm{C}}, \mathrm{R}_{\mathrm{AC}}=0.02 \Omega$

Resistance of section $\mathrm{A}_{\mathrm{CP}}, \mathrm{R}_{\mathrm{ACD}}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{R}_{\mathrm{CD}}=0.04 \times 200 / 1000$
$\mathrm{C}_{\mathrm{D}}, \mathrm{R}_{\mathrm{CD}}=0.032 \Omega$

Resistance of section $\mathrm{D}_{\mathrm{E}}, \mathrm{R}_{\mathrm{DE}}$
$\mathrm{D}_{\mathrm{E}, \mathrm{R}_{\mathrm{DE}}}=0.04 \times 1000 / 1000$
$=0.04 \times 1$
$D_{E}, R_{D E}=0.04 \Omega$

Resistance of section
$\mathrm{E}_{\mathrm{B}}, \mathrm{R}_{\mathrm{EB}}=0.04 \times 700 / 1000$ $=0.04 \times 0.7$
$\mathrm{E}_{\mathrm{B}}, \mathrm{R}_{\mathrm{E}}=0.28 \Omega$

The current and the various setion of distributer are
$\mathrm{L}_{\mathrm{EB}}=100 \mathrm{~A}$
$\mathrm{I}_{\mathrm{DE}}=100+250=350 \mathrm{~A}$
$\mathrm{I}_{\mathrm{CD}}=350+200$
$=550 \mathrm{~A}$
$\mathrm{I}_{\mathrm{AC}}=550+150$
$=700 \mathrm{~A}$

* Potential difference at point $\mathrm{C}=$?
$\mathrm{V}_{\mathrm{C}}=$ Voltage at $\mathrm{A}-$ Voltage drop in A.C
$=\mathrm{VA}-\mathrm{I}_{\mathrm{AC}} . \mathrm{R}_{\mathrm{AC}}$
$=400-700 \times 0.02$
$=400-14$
$\mathrm{V}_{\mathrm{C}}=386 \mathrm{~V}$

Potential difference at point $\mathrm{D}=$?
$\mathrm{V}_{\mathrm{D}}=\mathrm{VC}-\mathrm{I}_{\mathrm{CD}} . \mathrm{R}_{\mathrm{CD}}$
= $386-550 \times 0.032$
= 386-17.6
$=368.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{D}}=368.4 \mathrm{~V}$
Potential difference at point $\mathrm{E}=$?
$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{D}}-\mathrm{I}_{\mathrm{DE}} . \mathrm{R}_{\mathrm{DE}}$
$=368.4-350 \times 0.04$
$=368.4-14$
$=354.4 \mathrm{~V}$
$\mathrm{V}_{\mathrm{E}}=354.4 \mathrm{~V}$

Potential difference at load point $\mathrm{B}=$?
$\mathrm{V}_{\mathrm{B}}=\mathrm{VE}-\mathrm{I}_{\mathrm{EB}} \cdot \mathrm{R}_{\mathrm{EB}}$
$=354.4-100 \times 0.028$
$=354.4-2.8$
$=351.6 \mathrm{~V}$
$V_{B}=351.6 \mathrm{~V}$ Ans.

Q3:

A D.C. distribution system, which is 3 -wired, is supplying a load of 7Ω resistance across the positive outer and neutral and a load of 9Ω resistance across negative outer and neutral at the far end of the distributor. The resistance of each conductor is $\mathbf{0 \bullet 2} \Omega$. If the voltage between any outer and neutral at the load end is to be kept at 260 V , find the voltages at the feeding end.

Ans:
Solution

Current on +ve outer $\quad I_{1}=260 / 7=$
37.14A

Current on -ive outer $\quad I_{2}=260 / 9=28.88 \mathrm{~A}$
Current in neutral $=\mathrm{I}_{1}-\mathrm{I}_{2}=37.14-28.88=8.26 \mathrm{~A}$
Voltage between +ve outer and neutral at feeding end is

$$
\begin{aligned}
& V_{1}=V_{\mathrm{EL}}+\mathrm{I}_{1} \mathrm{R}_{\mathrm{AE}}+\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \mathrm{R}_{\mathrm{NL}} \\
& =260+37.14 \times 0.2+8.26 \times 0.2=269.08 \mathrm{~V}
\end{aligned}
$$

Voltage between -ve oyter and neutral at feeding end is

$$
\begin{gathered}
\mathrm{V}_{2}=\mathrm{V}_{\mathrm{LC}}-\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \mathrm{R}_{\mathrm{NL}}+\mathrm{I}_{2} \mathrm{R}_{\mathrm{BC}} \\
=260-8.26 \times 0.2+28.88 \times 0.2=267.42 \mathrm{~V} \quad \text { Ans. }
\end{gathered}
$$

What will happen if the insulating material used for underground cable is hygroscopic and has low dielectric strength?

Ans:

(i) High insulation resistance to avoid leakage current.
(ii) High dielectric strength to avoid electrical breakdown of the cable.
(iii) High mechanical strength to withstand the mechanical handling of underground cables.
(iv) Non-hygroscopic i.e., it should not absorb moisture from air or soil. The moisture tends to decrease the insulation resistance and hastens the breakdown of the cable. In case the insulating material is hygroscopic, it must be enclosed in a waterproof covering like lead sheath.
(v)Non-inflammable

Types of underground cables
(vi) Low cost so as to make the underground system a viable proposition.
(vii) Unaffected by acids and alkalies to avoid any chemical action.

The principal insulating materials used in cables are rubber, vulcanized India rubber, impregnated paper, varnished cambric and polyvinyl chloride.

Q4 (b)

Pure rubber cannot be used as an insulating material for underground cable. Justify this Statement.

[^0]
In Direct laying method of underground cable, the maintenance cost is high. Justify this Statement.

Ans:

Direct laying of underground cables

This method is the most popular as it is simple and cheap. The cables to be laid using this method must have the serving of bituminized paper and hessian tape so as to provide protection against corrosion and electrolysis. The direct laying procedure is as follows.

Laying procedure

- A trench of about 1.5 meters deep and 45 cm wide is dug.
- Then the trench is covered with a 10 cm thick layer of fine sand.
- The cable is laid over the sand bed. The sand bed protects the cable from the moisture from the ground.
- Then the laid cable is again covered with a layer of sand of about 10 cm thick.
- When multiple cables are to be laid in the same trench, a horizontal or vertical spacing of about 30 cm is provided to reduce the effect of mutual heating. Spacing between the cables also ensures a fault occurring on one cable does not damage the adjacent cable.
- The trench is then covered with bricks and soil to protect the cable from mechanical injury.

Advantages

- Simpler and cheaper than the other two methods
- Heat generated in cables is easily dissipated in the ground.

Disadvantages

- To install new cables for fulfilling an increased load demand, completely new excavation has to be done which costs as much as the new installation.
- Alterations in the cable network are not easy.
- Maintenance cost is higher.
- Identifying the location of a fault is difficult.
- This method cannot be used in congested areas such as metro cities where excavation is too expensive.

Q5 (b)

Ans:

Solid system

The solid system of cable laying is mainly performed where the cable is laid in the wood, cast iron, or another nonoil surface. Normally cable is laid in the manner which provides good mechanical strength to cables. This system is much appropriate for solid based systems. Normally the cables are filled with bituminous materials for providing protection and avoid heat dissipation. Then another Asphalt cover layer around the cable and bituminous material area for further protection. The system is expensive compare to the direct laid system and
heat dissipation capacity is not much good compete with other systems. But for toughing material woods are much cheap so it is widely used by considering the economic impacts.

[^0]: Ans:
 Rubber may be obtained from milky sap of tropical trees or it may be produced from oil products.
 It has relative permittivity varying between 2 and 3 , dielectric strength is about $30 \mathrm{kV} / \mathrm{mm}$ and resistivity of insulation is $1017 \Omega \mathrm{~cm}$.
 Although pure rubber has reasonably high insulating properties, it suffers from some major drawbacks viz., readily absorbs moisture, maximum safe temperature is low (about $38^{\circ} \mathrm{C}$), soft and liable to damage due to rough handling and ages when exposed to light.
 Therefore, pure rubber cannot be used as an insulating material in underground cables.

