Course Details

Course Title: Numerical Analysis Instructor:

Module:

Total Marks: \qquad

Student Details

Name:

JUNAID UR REHMAN
Student ID:

Q1.	(a)	1. A 3×3 identity matrix has a total of 3 and \qquad Eigen values. a. same b. different c. none d. zero 2. Eigen values of a symmetric matrix are all \qquad a. real b. complex c. zero d. positive 3. All of the following are finite difference methods except for \qquad a. Jacobi's method b. Newton's backward difference method c. Stirlling formula d. Forward difference method 4. The characteristics polynomial of a 3×3 identity matrix is \qquad , if x is the Eigen value of the 3×3 identity matrix. a. $\quad(x-1)^{3}$ b. $(x+1)^{3}$ c. $x^{3}-1$ d. $x^{3}+1$ 5. Two matrixes with the same characteristic polynomial does not need to be similar a. true b. false 6. Is the determinant of a diagonal matrix the product of the diagonal elements? a. true b. false 7. The Jacobi's method is a method of solving a matrix equation on a matrix that has \qquad zeros along its main diagonal. a. No b. At least one c. At least two d. At least three 8. The power method can be used only to find the Eigen value of "A" that is largest in absolute value, we call this Eigen vale the dominant Eigen value of "A". a. true b. false 9. Central difference method is the finite difference method. a. true b. false 10. Iterative algorithms can be more rapid than direct methods. a. true b. false 11. $\Delta f_{r}=f_{r+1}-f_{r}$ is known as \qquad difference operator. a. forward b. backward c. central d. none					Marks 11
Q2.	(a)	Use bisection method to solve the equation $\mathrm{x}^{2}-7=0$, Perform four iterations and show all the necessary steps.					Marks 6
Q3.	(a)	Interpolate the value of 0.2X 0.2 $\mathrm{~F}(\mathrm{x})$ 0.2304	 g Newton 0.3 0.2788		formula. Sh 0.5 0.3617	the ne 0.6 0.3979	CLO 1
	(b)	Use Newton Raphson method to find root of $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}+2$ with $\mathrm{x}_{0}=0.2$. Perform four iterations.					Marks 6

$$
\begin{aligned}
& \text { NAME \# Junaid-ur-Reh mon } \\
& \text { ID } \# 11484
\end{aligned}
$$

Q. 1 . multiple choice questions.
(1) A 3×3 identity materix has a total $q 3$ and \qquad Eigen values?
Ans \# Same (A).
(2) Eigen values of a symmetric matrix are all \qquad Ans \# IA real.
(3) All of the following are finite difference methods except for \qquad -

Ans \# (b) newton backward difference method.
(4) The characteristics polynomial of a 3×3 identity matrix is \qquad . If x is the aiken value of the $3 \times s$ identity matrix.
Ans \# (c) $x^{3}-1$.
(5) two matrix with the same charactaristio polynomial does not need to be similar
Ans \# (b) false

NAME Junaid ur lehman
(2)

ID \# 11484
(6) Is the determinant of a diagonal matrix the product
q the diagonal element? q the diagonal element?
Ans \#(A) true.
(7) The jacobi; method is a method of solving matrix equation on a matrix that has - zeros alloy its main diagonal.
Ans (A) no
(8) The power method can be used only to find the Eigen Valves of ' A ' that is largest in absolute values. We call this Eigen value the domino ant Eigen valve of ' n '.
Ans \# (A) true
(9) Central difference method is the finite difference method
Ans H(A) true
(10) Herative algorithms can be more rapid then direct method.
Ans \# (B) false
(II) $\Delta f_{r}=f_{r}+1-f_{r}$ is known as - difference operecter. Ans\# (A) forward.

Q 2 \# Use bisection method to solve the equation $x^{2}-7=0$, perform four iterations and show all the necessary steps?
Sol

$$
F(x)=x^{2}-7=0
$$

StepNolH First eq $=0$?
ideacricocta
assume limits [upper lowe. upper]

$$
\begin{aligned}
\text { limits } & =\left[\frac{1}{2}, \frac{2}{4}\right] \\
F(1)=(1)^{2}-7 & =-6 \\
F(2)=(2)^{2}-7 & =-3 \\
F_{1} \times F_{2} & =-6 \times-3 \\
& =+18>0
\end{aligned}
$$

Alteration 1\# New limit $[1,3]$

$$
\begin{aligned}
& F(3)=(3)^{2}-7=2 \\
& F(1) \times F(3)=-6 \times 2=-12<0
\end{aligned}
$$

Step 2\# If $F(l) \times F(U)=\operatorname{Ans}<0$ then Find mid point
t) if $F(l) \times F(U)=$ Ans >0 then charge limit by finding point'

Find $c=$? mid point

$$
\begin{aligned}
& C=\frac{1+3}{2}=\frac{4}{2}=2 \text { pulling in the eq u } \\
& F(C)=(2)^{2}-7=-3
\end{aligned}
$$

Titration 2 \# Now limit $(2,3)$
mid point =?

$$
C=\frac{2+3}{2}=\frac{5}{2}=2.5 \text { putt in ca }
$$

ope o

$$
\begin{aligned}
& F(2.5)=(2.5)^{2}-7=6.25-7=-0.75 \\
& F(2.5) \times F(3)=(-0.75) \times 2=-1540
\end{aligned}
$$

Step\#\# $\#\left[\begin{array}{cc}2.5 & 3 \\ l & 0\end{array}\right)$
iterations \#

$$
\begin{aligned}
& \text { lions }{ }^{H} C=\frac{2.5+3}{2}=2.75 \text { put in eq } \\
& F()=(2.75)^{2}-7=-5.625 \\
& F(C) \times F(u)=-5.625 \times 3=-420 \\
& {[2.75,3]}
\end{aligned}
$$

Skep.
iteration 4 \#

$$
\begin{aligned}
& C=\frac{2.75}{2}+3=2.875 \text { putin eq } \\
& F(C)=(2.875)^{2}-7=1.265 \\
& F(C) \times F(3)=1.265 \times 2=.52 .5370 \\
& F(C) \times F(2.75)=1.265 \times-5625=-7,115.6<0 \\
& {[2.75,2.875]}
\end{aligned}
$$

Q 3 con Finke polate the vale 9 0.2i usiry nowton: Foned diference fromila show all to necessany step!

$$
\left\lvert\, \begin{array}{cccccc}
1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\
F(x) & 0.2344 & 0.2788 & 0.3222 & 0.367 & 0.3979
\end{array}\right.
$$

SolH
Step 14 Difference trible

x	y	Δ	$\Delta=$	$\Delta 3$	$\Delta 4$
0.2	0.2304	0.0484	-0.005	+0.011	0.0005
0.3	0.2788	0.0434	-0.0039	0.0006	
0.4	0.3222	0.0395	-0.0033		
0.5	0.3617	0.0362			
0.6	0.3979				
y_{0} $\Delta y 0$ $\Delta 2 y 0$ $\Delta 2 y_{0}$ $\Delta 4 y_{0}$ 0.2304 0.0484 -0.005 +0.0011 0.0005\quad Step No2					

secedeant

Step Nos "1

$$
\begin{aligned}
& x=a+h h \\
& \Rightarrow r=0.25 \\
& a \Rightarrow 0.2 \\
& h=0.1 \quad\left[h=x_{2}-x_{1}\right]
\end{aligned}
$$

puedriy the values

$$
\begin{aligned}
& x=a+n h \\
& 0.25=0.2+n(0.1) \\
& 0.25-0.20=n(0.1) \\
& 4 \quad 0.05=n(0.1) \\
& \text { Find } n= \\
& n=\frac{0.05}{0.1}=0.5 \\
& \quad n=0.5
\end{aligned}
$$

$$
\text { Step No 4 } 0.05=n(0.1)
$$

$$
\text { Now Find } n=
$$

creep
$n=0.5 \quad y_{0}=0.2304, \quad \Delta y_{0}=0.0484 \quad \Delta 2 y_{0}=-0.005$
$\Delta 3 y_{0}=+0.0011, \quad \Delta y y_{0}=0.0005$

putt the valus in tamula

$$
F(x)=\frac{0.2304}{}+\left(\frac{0.5)}{(0.0484)}+\frac{(0.5)(0.5-1)}{2 \times 1}(-0.005)\right.
$$

$$
\begin{aligned}
& +\frac{0.5(0.5-1)(0.5-2)}{3 \times 2 \times 1}(+0.0011)+\frac{}{+} \\
& +(0.5)(0 \cdot 5-1)(0 \cdot 5-2)(0.5-2)
\end{aligned}
$$

$$
\frac{7(0.5)(0 \cdot 5-1)(0.5-2)(0.5-3)(-0.0005)}{4 \times 3 \times 2 \times 1}
$$

$$
F(x)=0.25064+0.0242+\frac{(-0.25)}{2} \frac{(-0.005)}{1}
$$

$$
+\frac{(0.375)}{6} \frac{(0.0011)}{1}+\frac{(-0.9375)}{24} \frac{(-0.0005}{1}
$$

$$
=0.2304+0.0242+0.000625+0.00006875
$$

$$
=0.2559320313 \mathrm{Am}
$$

$$
+0.0000195313
$$

$$
\begin{aligned}
& f(x)=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{2!} \Delta_{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta_{3} y_{0} \\
& +\frac{n(n-1)(n-2)(n-3)}{4!} \Delta_{4} y_{0}
\end{aligned}
$$

() $3(b)$ \# Use newton Raphson method to find rout q $f(x)=x^{3}+2 x+2$ with $x_{0}-0.2$ perform four iterations?

Sol Using newton Raphson formula

$$
x_{i}+1=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}(x i)}
$$

put $f\left(x_{1}\right)$ and $f^{\prime}\left(x_{1}\right)$ Values

$$
\begin{aligned}
x i+1 & =\frac{x i}{1}-\frac{\left(x^{3} i-2 x i+2\right)}{\left(3 x i^{2}-2\right)} \\
& =\frac{x i\left(3 x i^{2}-2\right)-\left(x i^{3}-2 x i+2\right)}{3 x i^{2}-2} \\
& =\frac{3 x^{3} i-2 x i i-x^{3} i^{3}+2 x i-2}{3 x^{2} i-2} \\
x i+1 & =\frac{2 x^{3} i^{3}-2}{3 x^{2} i-2}
\end{aligned}
$$

$\frac{\text { iteration } 1 \#}{x_{0}=0.2}$

$$
=t \frac{1.984}{t 1.28}=1.0553
$$

iteration 24

$$
\begin{aligned}
x 0= & 1.0553 \\
& =\frac{2\left(x_{1}^{3}\right)-2}{3\left(x_{i}^{3}\right)-2} \\
& =\frac{2(1.0553)^{3}-2}{3(1.0553)^{2}-2}=\frac{0.3504}{1.3409}=0.2613
\end{aligned}
$$

iteration 3 H

$$
\begin{aligned}
& x_{0}=.2613 \\
&=\frac{2 x^{3} i-2}{3 x^{2} i-2}=\frac{2(0.2613)^{3}-2}{3(0.2613)^{2}-2} \\
&=\frac{+19643}{+1.7951}=1.0942
\end{aligned}
$$

iteration 4 H

$$
\begin{aligned}
x_{0} & =1.0942 \\
& =\frac{2 x_{1}^{3}-2}{3 x^{2}-2}=\frac{2(1.0942)^{3}-2}{3(1.0942)^{2}-2} \\
& =\frac{0.6201}{1.5918}=0.3895 \mathrm{Am}
\end{aligned}
$$

