Pray for the safety of humanity. Pray for all the Muslims and Pakistanis wherever they are.

Pray for our university, staff and students.

Instructions:

This is an open-book take-home mid-term assignment, to be submitted till Monday, April $26^{\text {th }}$, 2020. You may consult the textbook, your notes, and any material posted on SIC. No other sources of information are allowed, including friends, classmates, materials from other classes, tutors, etc. Please write your solutions as clearly and neatly as possible. Also, show all your work, preferably with explanations for each step. If you are asked to do a problem a specific way (for example, "use the standard matrix representation. . . "), then you will receive no credit for doing it any other way. You will also receive no credit for answers without sufficient work to produce them. Attempt all questions. Answers copied will both be marked zero. Late submission will not be accepted and marked zero.

How to Submit?

1. Write your names and Ids at the top of answer sheet.
2. Scan / Take Photo of each paper and save each photo with a number. E.g. photo of paper 1 of answer sheet be saved with name 1.jpg, then 2.jpg and so on.
3. Put all answer photos in a word file by simply copy and pasting images, name the document with subject name, your name and id e.g. LA_Ali_12345.
4. You will be provided upload link on sic to submit your answers.Go to Lectures section and click on Upload Assignment and upload your answers document file in the subject.Different formats are mentioned for uploading assignment, student can choose any one of them.
5. Due date and remaining time will be shown on the same window.
Q. No. 1 Consider the given below matrix as the augmented matrix of a linear
system. Explain in your words the next elementary row operation that should be performed in order to solve this system. Where ID3 is the $3^{\text {rd }}$ digit in your ID and ID_last is the last digit of your ID in inverse e.g. if your ID is 12345 then -ID_last $=-5$.

$$
\left[\begin{array}{ccccc}
1 & I D 3 & 3 & 0 & 5 \\
0 & 1 & -I D _L a s t & 0 & 7 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & I D 3
\end{array}\right]
$$

Q. No.

2 Find the elementary row operation that transforms the first matrix
(a) into second and reverse row operation that transforms the second matrix into first
(b) Given below are some matrices. Find whether these are in the forms
written in front of them or not. Explain in your own words for each of the selection in detail.
a. $\left[\begin{array}{cccl}e & 0 & 0 & 0 \\ 0 & \Pi & 0 & 0 \\ 0 & 0 & -\Pi & 0 \\ 0 & 0 & 0 & e\end{array}\right]$ is in echelon form
b. $\left[\begin{array}{ccc}1 & 0 & \Pi \\ 0 & 1 & e \\ 0 & 0 & 0\end{array}\right]$ is in echelon form
$0 \quad 0 \quad 0$
$\begin{array}{llll}5 & 0 & 0 & 7\end{array}$
c. $\left[\begin{array}{llll}0 & 1 & 0 & 5\end{array}\right]$ is in reduced row echelon form
$\begin{array}{llll}0 & 0 & 1 & 4\end{array}$
$\begin{array}{llll}1 & 0 & 0 & 7\end{array}$
d. $\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ is in reduced row echelon form
$\begin{array}{llll}0 & 0 & 1 & 4\end{array}$
Q. No.

3 The row echelon form is used to solve the system of linear
(a) equations. What is the difference between the row echelon and reduced row echelon form? What is the practical use of reduced row echelon form? Give one example.
(b) Find an echelon form for the below matrix using row operations. Where
ID2 is $2^{\text {nd }}$ digit in your ID e.g. if your ID is 12345 ID2 $=2$, ID3=3, ID_first_last is the first and last digit of your ID i.e. 15

1	ID2	8
2	8	-1
[-ID3	0	0
1	-4	ID_First_Last

2) $\#$ Consider the glen below matrix is the augmented Matrix of a linear system Explain in your own words the next clemuntany row operation that should be performed in order to solve this system where ID3 is the $3^{\text {ra }}$ digit in your ID. And ID last is the last digit of your in in inverse eg if your iD is 12345 then -30 -last $=-5$?

$$
\left[\begin{array}{ccccc}
1 & 10, & 3 & - \text { las } & 0 \\
0 & 5 \\
0 & 1 & -I D-101 t & 0 & 7 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 1 & 103
\end{array}\right]
$$

Sol\#

$$
\left[\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & -4 & 0 & 7 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

let the matrix is A

$$
\begin{aligned}
& x+4 y+3 z+0 j=5 \\
& 0 x+y-4 z+0 j=7 \\
& 0 x+0 y+z+0 j=-6 \\
& 0 x+0 y+0 z+1 j=4
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 4 & 3 & 0 \\
0 & 1 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
j
\end{array}\right]=\left[\begin{array}{c}
5 \\
7 \\
-6 \\
4
\end{array}\right]
$$

let the Augmented matrix be

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc|c}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & -4 & 0 & 7 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & 4
\end{array}\right]} \\
=\left[\begin{array}{cccc}
1 & 0 & 19 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
-23 \\
-17 \\
-6 \\
4
\end{array}\right] R_{1}-4 R_{2}+4 R_{3} \\
=\left[\begin{array}{lccc|c}
1 & 0 & 0 & 0 & 91 \\
0 & 1 & 0 & 0 & -17 \\
0 & 0 & 1 & 0 & -6 \\
0 & 0 & 0 & 1 & 4
\end{array}\right] \\
x=91
\end{array}\right] \begin{array}{ll}
x=19 R_{3} \\
y= & -17 \\
z= & -6 \\
y=4
\end{array}
$$

Q2 $(a) \rightarrow$ Fid the elementary row operation that transforms the first matrix into second and reverse row operation that trenstorms the secad matrix into first.

$$
\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 2 & -5 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 0 & 3 & -5
\end{array}\right]
$$

Sol\#
let first matrix be A '
let second matrix be B

Etementeny Row operations

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 2 & -5 & -1
\end{array}\right] \\
& R_{3} \sim R_{3}-2 R_{2} \\
& A=\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 0 & 3 & -5
\end{array}\right]
\end{aligned}
$$

Reverse Row operations

$$
\begin{array}{r}
B=\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 0 & 3 & -5
\end{array}\right] \\
R_{3} \leadsto 2 R_{2}+R_{3}
\end{array}
$$

$$
B=\left[\begin{array}{cccc}
1 & 3 & -1 & 5 \\
0 & 1 & -4 & 2 \\
0 & 2 & -5 & -1
\end{array}\right] \text { Hence proved. }
$$

(4)
Q) $2(b):$ Given below are some matrices Find Whether these are in the form written in front of them or not Explain in your own words for each of the Selection in detail?
(a) $\left[\begin{array}{cccc}e & 0 & 0 & 0 \\ 0 & \Pi & 0 & 0 \\ 0 & 0 & -\pi & 0 \\ 0 & 0 & 0 & e\end{array}\right]$ is in echelon form.
(b) $\left[\begin{array}{lll}1 & 0 & \pi \\ 0 & 1 & e \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is in echelon form
(c) $\left[\begin{array}{llll}5 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 4\end{array}\right]$ is in reduced row echelon form
(d) $\left[\begin{array}{llll}1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4\end{array}\right]$ is in reduced row echelon form.

Sol\#
Let, $(a) \Rightarrow A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \pi & 0 & 0 \\ 0 & 0 & -\pi & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is in echelon form
Yes, matrix A is in echelon form because of its C definition as echelon form of a matrix state that'If a column contains a leading entry then are zero: In matrix A, it satisfies the definition of echelon form of a matrix, so it is in echolen form.
(b) $\left[\begin{array}{lll}1 & 0 & \pi \\ 0 & 1 & e \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is in echelon form.

$$
\begin{aligned}
& \text { Sol\# } \\
& \text { Let } B=\left[\begin{array}{lll}
1 & 0 & \pi \\
0 & 1 & e \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Yes matrix B is in echelon form because of its definition, which states that" If a column contains a leading entry then all entries below that leading entry are zero.
matrix B column contain leading entries as 1 and below that all entries are zero so matrix B is in echelon form.
(C)

$$
\left[\begin{array}{llll}
5 & 0 & 0 & 7 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

(6) $1 D+111484$ is in reduced row echelon form
Solution \#

$$
\begin{aligned}
& \text { Let } C=\left[\begin{array}{cccc}
5 & 0 & 0 & 7 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 4
\end{array}\right] \\
& C=\left[\begin{array}{cccc}
5 / 5 & 0 / 5 & 0 / 5 & 7 / 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 4 \\
R 1 / 5
\end{array}\right] \\
& C=\left[\begin{array}{llll}
1 & 0 & 0 & 7 / 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 4
\end{array}\right]
\end{aligned}
$$

= Yes matrix c is in reduced row echelon form. because reduce row echelon form skates that In reduced row echelon form the leading (0-efticent must be 1. in each row is to the right of the leading (o-etficent in the row above it. Accorcling to definition matrix C Satisfies the definition properties so, is in reduced row echelon form.
(d) $\left[\begin{array}{llll}1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4\end{array}\right]$ is in reduced row echelon

Sol:-

$$
\text { Et } D=\left[\begin{array}{llll}
1 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

No matrix D is not in reduced yow echelen form because if a matrix is in reduced row echelon form then it row (non-zero) (contains. Its Fir entries as a number 1 . matrix D the zero vow is located in mid of matrix the so it is not in reduced row echelon form.
Q) $3(a)$:- The row echelon form is used to solve the system q linear equations what is difference between the row echelon and reduced vow echelon form? What is the practical use f reduced row echelon form? Give one example?
Ans\# Difference b/w vow echelon and reduced row echelon form:-

Row Echelon form
(4) Row echelon form of a matrix is define os" "the leadingenting in row echelon form in each row (Column) is the only nen-zero entry in its row (column).
2) Echelon form of a matrix is nt unique whichmeen there are infinite answers possible when we perform row reduction or elementry
operation. operation.

Reduced row Echelon form.
(1) Reduced row echelon form is defined a) $=\ln$ reduced row echelon form the leftmost non-zero entry of arrow is equal to 1 . The leftmost non-zero entry of alow is the only nan zero entry in its Column.
(2) Reduced row echelon form is unique. which means when we apply elementry row operation on a matrix it will produce the same answers. no matter how we perform the same now operations
(3) The entries only below the First leadiry non zero entry that must be zero not necessary for above one's
(3) The entries above and below the first 2 in each row must all be zero.
(4) Each raw containing a non-zero number 2 appearing in the now's firs) nan zero column. such entry will be kanaun as "leading entry lone'
\# Ex crimple H

$$
\left|\begin{array}{lllll}
1 & 0 & 2 & 3 & 4 \\
0 & 1 & 5 & 6 & 7 \\
0 & 0 & 0 & 1 & 8 \\
0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

(4) In reduced row echelon Form, the left most non-zero entry of a row is equal to 1. The leftmost nen-zero entry if a row is the only. non-zero entry in its column.

Example H

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

main diagonal entries are 1 All other entries are o
Q) $3(b)$:- Find echelon form for the below matrix using row operation. Where ID2 is $2^{\text {nd }}$ digit in your ID eeg if your ID is $12345 \quad D_{2}=2, D_{3}=3$. ID-first - last is the firn and last digit of your in ie I5

$$
\left[\begin{array}{ccc}
1 & 1 D_{2} & 8 \\
2 & 8 & -1 \\
-1 D_{3} & 0 & 0 \\
1 & -4 & I D \text {-first. last }
\end{array}\right]
$$

Sol H

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 1 & 8 \\
2 & 8 & -1 \\
-4 & 0 & 0 \\
1 & -4 & 14
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 8 \\
2 & 8 & -1 \\
1 & -4 & 14 \\
-4 & 0 & 0
\end{array}\right] R_{3} \longleftrightarrow R_{4}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 16 & -29 \\
0 & -16 & 336 \\
-4 & 0 & 0
\end{array}\right] R_{2}-2 R_{3}} \\
& 4 R_{3}+R_{4} \\
& =\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 16 & -29 \\
0 & 0 & 167 \\
-4 & 0 & 0
\end{array}\right] R_{3}+R_{2} \\
& =\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 16 & -29 \\
0 & 0 \\
0 & 4 & 167 \\
0 & 32
\end{array}\right] R_{4}+4 R_{1} \\
& =\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 16 & -29 \\
0 & 0 & 167 \\
0 & 0 & 157
\end{array}\right] 4 R_{4}-R_{2} \\
& =\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 1 & -29 / 16 \\
0 & 0 & 167 \\
0 & 0 & 157
\end{array}\right] \frac{1}{16} \times R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 1 & 8 \\
0 & 1 & -29 / 16 \\
0 & 0 & 1 \\
0 & 0 & 157
\end{array}\right| \frac{1}{167} \times R_{3} \quad I D=11484 \\
& \begin{array}{c}
=\left[\begin{array}{ccc}
1 & 1 & 8 \\
0 & 1 & -29 / 16 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array} \mathrm{R4}_{4}-157 R_{3}\right. \\
\text { Ans Ner. }
\end{array}
\end{aligned}
$$

