IQRA NATIONAL UNIVERSITY

Computer Science Department
Summer-2020
Subject: Operation Research Time Allowed: 4 hours
Instructor: Saifullah Jan Name = shabban Khan Id 12994

Q 1: Using simplex method, solve the following linear programming problem.

$$
\begin{aligned}
& 5 x_{1}+4 x_{2}+3 x_{3}=8 \\
& 2 x_{1}+7 x_{2}+5 x_{3}=5 \\
& 4 x_{1}+4 x_{2}+2 x_{3}=4
\end{aligned}
$$

Q 2: Use Vogel's approximation method, to solve the following.

Origin	Destination			Supply
	1	2	3	110
1	50	100	100	160
2	200	300	200	150
3	100	200	300	
Demand	140	200	80	

(2)
if van

Row $1{ }^{100_{(12)}{ }^{50}(11)}=50$

$$
\begin{aligned}
& 2 \quad 200\left(c_{12}\right)-200\left(c_{21}\right)=6 \\
& 3 \quad 200\left(c_{32}\right)-100\left(c_{31}\right)=100
\end{aligned}
$$

Colon

$$
\begin{aligned}
& 1100 c_{31}-50 c_{4}=50 \\
& 200 c_{32}-100 c_{12}=100 \\
& 3200 c_{23}-100 c_{13}=100
\end{aligned}
$$

mim $=100$
Row sell Row (3)

$$
\begin{aligned}
& x_{a}=\operatorname{mis} \\
& \min 81<0 \operatorname{an} 140
\end{aligned}
$$

Row
1: $\log _{\mathrm{ci3}_{3}}-100=11=0$
2. 3evern-200 cxis $=100$
3. $30 \mathrm{cxi}_{\mathrm{M}}-200 \mathrm{CT}_{2}=100$

Cost

$$
\begin{aligned}
& 2:=100=100 \\
& 3+10 \\
& x_{14}=100 \\
& x_{22}=80 \\
& x_{32}=80 \\
& x_{x_{1}}=140 \\
& x_{22}=10 \\
& Z=87800
\end{aligned}
$$

Q 3: For the figure given below, use dynamic programming approach to find out the shortest possible path?

Q 4: A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B .
At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.
The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximize the combined sum of the units of X and the units of Y in stock at the end of the week.
Formulate the problem of deciding how much of each product to make in the current week as a linear program.

Q 5: The ICARE Company has three plants located throughout a state with production capacity 50,75 and 25 gallons. Each day the firm must furnish its four retail shops R1, R2, R3, \& R4 with at least 20, 20, 50, and 60 gallons respectively. The transportation costs (in Rs.) are given below.

Company	Retail				Supply
	R1	R2	R3	R4	
	3	5	7	6	50
P2	2	5	8	2	75
P3	3	6	9	2	25
Demand	20	20	50	60	

The economic problem is to distribute the available product to different retail shops in such a way so that the total transportation cost is minimum?

