Date: $13^{\text {th }}$ April 2020
Midterm Assignment -Spring 2020 Course Title: Differential Equations

Instructor: Engr. Latif Jan
Program: BS (CS-SE-EE)
Total Marks: 30
Time Allowed: 6 days Note:

Attempt all Questions:

Name Muhammad maaz akhunzada id 11448
Q 1: a) Define differential equation along with 2 examples? (1+1 Marks)
b) Define a

Separable Differential Equation (DE)? (1+4+3 Marks)

i. Solve the following Initial Value Problem (IVP) using separable DE and find the interval of validity of the solution.

$$
\begin{aligned}
& \text { (a) } y^{\prime}=\frac{x y^{3}}{\sqrt{1+}} y(0)=-1 \\
& x 2
\end{aligned} \begin{aligned}
& \text { (b) } y^{\prime}=e^{-y}(2 x-4) \quad(5)=0
\end{aligned}
$$

Q 2: a) Solve the following IVP using Linear Differential method
(i) Explain the steps for solving Linear Differential Equation. (ii) $\boldsymbol{c o}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+$ $\sin (x) y=2 \cos ^{3}(x) \sin (x)-1 \quad y[-]=\pi 32, \quad 0 \leq x \leq \pi_{-}$
(iii) $x^{\prime}+2 x=\sin t$

Q 3: Solve the following IVP for the exact equation and find the interval of validity for the solution.
(5+5 Marks)
(i) $2 x y-9 x^{2}+\left(2 y+x^{2}+1\right)^{d y} \frac{}{d x}=0$,
$(0)=-3$
(ii) t $2 t y_{2+1}-2 t-\left(2-l\left(t^{2}+1\right)\right) y^{\prime}=0$
$y(5)=0$

Q1 ia) Define differential equation along with examples?
2. Differential Equation:-

Differential equation is an equation
that relates one ore more functions and their derivatives In applications, the function generally eppersent physical quantities, the derivatives represents their rater y change and the differential equation defines a relationship between the two.
Example
(1) $\frac{d y}{d x}+x y=e^{2 x}$
(2) $u_{x x}+u_{y y}+0$

As bath of the above, conmentains the derivative so these are differential equation.
b) Define a Separable Differential Equation?
tr Separable (D.E) r
A separable differential equation is one
that can be braken intonset of separate equations of laver dimensionality by a method of separation of variables.

1. Solve the following initial value problem (IVP) using separable DE and find the intoval g validity of the salulime.
a) $y^{\prime}=\frac{x y^{3}}{\sqrt{1+x^{2}}} \quad y(0) z-1$

SN
$\int \frac{d y}{y^{2}}=\int \frac{x}{\sqrt{1+x^{2}}} d x$

$$
\begin{gathered}
\Rightarrow \int y^{-3} d y=\int \frac{x}{\sqrt{1+x^{2}}} d x \\
\Rightarrow 1+x^{2}=u \\
\Rightarrow x d x=d u \\
\Rightarrow x d u=\frac{d u}{2}
\end{gathered}
$$

$\Rightarrow \int y^{-3} d y=\int \frac{1}{\sqrt{v}} \frac{d u}{2}$
$\Rightarrow \frac{y^{-3+1}}{-3+1}=\frac{1}{2} \frac{0^{-1 / 2+1}}{-1 / 2+1}+C$
$\Rightarrow \frac{y^{-2}}{-2}=\frac{\partial}{\partial} \sqrt{4}+c$
2) $\frac{1}{-\partial y^{2}}=\sqrt{u}+c$
2) $\frac{1}{-\partial y^{2}} \cdot \sqrt{1+x}+c$
$\Rightarrow y(0)=-1$

$$
\begin{aligned}
& \frac{1}{-g(-1)^{2}}=\sqrt{1}+C \\
& \Rightarrow \frac{1}{-2}=1+C \\
& \Rightarrow-1-\frac{1}{2}=C \\
& \Rightarrow C=\frac{-2-1}{2} \\
& \Rightarrow C=\frac{-3}{2} \\
& \Rightarrow \frac{y^{-2}}{2}=\sqrt{1+x^{2}}-3 / 2 \frac{4 y}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } y^{\prime} \cdot e^{-y}(\partial x-4) \quad y(5)=0 \\
& \Rightarrow \frac{d y}{d x}=e^{-y}(2 x-y) \\
& \Rightarrow \int \frac{d y}{e^{-3}}=\int(2 x-4) d x \\
& \Rightarrow \int e^{y} d y=\frac{\partial x^{2}}{\partial}-4 x+c \\
& \Rightarrow e^{y}=x^{2}-4 x+c \\
& \Rightarrow y=\ln \left(x^{2}-4 x\right)+c \\
& \Rightarrow y^{2} \ln \left((5)^{2}-4(5)\right)+c \\
& \Rightarrow 0=\ln (25-20)+c \\
& \Rightarrow 0=\ln 5+c \\
& \Rightarrow C=-\ln 5 \\
& \Rightarrow y=\ln \left(x^{2}-4 x\right)-\ln 5
\end{aligned}
$$

(1) a) Solve the following IVP using Linear Differential method
i) Explain the steps for solving Linear Differential Equation. Fallowing are the steps for solving Linear Differential Equation

1. Substitute $y=U V$, and

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

into $\frac{d y}{d x}+P(x) y=Q(x)$
2. Factor the parts involving v.
3. Involving v term equal to zero (this given $D \cdot E$ in u and x which can be solved in the next step).
4. Solve using separation of variable to find u.
5. Susstitite u back into the equation we gat at step 2 .
6. Solve that to find v.
7. Finally suscitute u and v into $y_{2} u v$ to get salution.
ii) $\cos (x) y^{\prime}+\sin (x) y=2 \cos ^{3}(x) \sin (x)-1 \quad y\left[\frac{\pi}{4}\right]=3 \sqrt{2} \quad 0 \leq x \leq \pi / 2$ Sol \div ing by $\cos (x)$

$$
\begin{aligned}
& \Rightarrow y^{\prime}+\frac{\sin (x) y}{\cos (x)}=\frac{\partial \cos ^{3}(x) \sin (x)-1}{\cos (x)} \\
& \Rightarrow y^{\prime}+\tan (x) y=\frac{\partial \cos ^{3}(x) \cdot \sin (x)-1}{\cos (x)}-\text { (1) }
\end{aligned}
$$

It has the form $y^{\prime}+P(x) y=Q(x)$
where $P(x)=\tan x$ \& $Q(x)=2 \cos ^{3}(x) \cdot \sin (x)-1$

Inteqrating factors $=e^{\int P(x) d x} \cdot e^{\int \tan x d x} \cdot e^{\ln (\sec x)}$
2) Integrating factor $=\sec x$.

Now Nultipling (1) by D.f or $\sec (x)$.

$$
\text { (1) } \begin{aligned}
\sec x y^{\prime}+\sec x \tan (x) y & =\frac{\partial \cos ^{3}(x) \sin (x)=1}{\cos (x)} \\
\Rightarrow & \frac{d}{d x}[y \sec x]
\end{aligned}=\frac{\partial \cos ^{3} x \sin x-1}{\cos ^{2} x}
$$

By soluing thes Integration we get.

$$
\begin{aligned}
& y \sec x=\frac{-1}{\tan ^{2} x+1}-\tan x+c \\
& y=\cos x\left[-\frac{1}{\tan ^{2} x+1}-\tan x+c\right]
\end{aligned}
$$

Now $y(\pi / 4)=3 \sqrt{2}$

$$
\begin{aligned}
& \Rightarrow y(\pi / 4)=\cos \pi / 4\left[\frac{-1}{\tan ^{2}(\pi / 4)+1}-\tan (\pi / 4)+c\right] \\
& \Rightarrow 3 \sqrt{2}=\frac{1}{2}\left[-\frac{1}{2}-1+c\right] \\
& \Rightarrow 3 \times 2=-\frac{3}{2}+c \Rightarrow \\
& \Rightarrow \frac{c-4}{y}=\cos x\left[-\frac{1}{\tan ^{2} x+1}-\tan x-4\right], 0 \leq x \leq \pi / 2
\end{aligned}
$$

iii) $x^{\prime}+\partial x=\sin t$.
sol $x^{\prime}+2 x=\sin t-(i)$
This $D \cdot E$ has the form $x^{\prime}+P(t) x=Q(t)$
where $P(t)=2$ and $Q(t)=\sin t$.

$$
I \cdot f=e^{\int \partial d t}=e^{\partial t}
$$

Mullopling (1) dy $e^{x t}$ we get.

$$
\begin{aligned}
& e^{2 t} x^{\prime}+\partial x e^{2 t}=2 e^{2 t} \sin t . \\
& \Rightarrow \frac{d}{d t}\left[x e^{2 t}\right]=e^{2 t} \sin t \\
& \Rightarrow 8 d\left[x e^{2 t}\right]=\int e^{2 t} \sin t d t \\
& \Rightarrow x e^{2 t}=\int e^{2 t} \sin t d t
\end{aligned}
$$

Solving by Integration by parts method.

$$
\begin{aligned}
& \Rightarrow x e^{2 t} \cdot \frac{(\partial \sin t-\cos t) e^{2 t}}{5}+c \\
& \Rightarrow x=e^{-2 t}\left[c+\frac{\partial e^{2 t} \sin t}{5}-\frac{e^{2 t} \cos t}{5}\right]
\end{aligned}
$$

Q23 Solve the following IUP for the exact equation and find ${ }^{8}$ the interval of validity goethe solution.

$$
\begin{aligned}
& \text { 1) } 2 x y-9 x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0 \quad y(0)-3 \\
& \text { se } \\
& \Rightarrow\left(2 y-9 x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0-C i\right) \\
& \Rightarrow\left(2 x^{2}+1\right) \frac{d y}{d x}=-2 x y+9 x^{2} \\
& \Rightarrow\left(2 y+x^{2}+1\right) d y=\left(9 x^{2}-2 x y\right) d x \\
& \Rightarrow\left(9 x^{2}-2 x y\right) d x-\left(2 y+x^{2}+1\right) d y=0 \\
& \Rightarrow\left(9 x^{2}-2 x y\right) d x+\left(-2 y-x^{2}-1\right) d y=0 \\
& M(x, y) d x+N(x, y) d y=0 \\
& \frac{\partial M}{\partial y}=-2 x \\
& \frac{\partial N}{\partial x}=-2 x
\end{aligned}
$$

So, Exact Equation. Solution exists

$$
\begin{aligned}
& \int_{y=a n i s} M d x+\int(\text { term } n N(\text { thee } x x)) d y \\
& \int\left(9 x^{2}-\partial x y\right) d x+\int(-\partial y-1) d y=C \\
& \Rightarrow \frac{9 x^{3}}{3}-\frac{\partial x^{2} y}{\partial}-\frac{\partial y^{2}}{\not \partial}-y=C
\end{aligned}
$$

$$
\begin{gathered}
\frac{9 x^{3}}{3}-x^{2} y-y^{2}-y=c \\
y(0)=-3 \\
-(-3)^{2}-(-3)=c \\
-9+3=c \\
c=-6
\end{gathered}
$$

ii) $\frac{\partial t y}{t^{2}+1}-2 t-\left(2-\ln \left(t^{2}+1\right)\right) y^{\prime}=0 \quad y(5)=0$
8.2

$$
\begin{aligned}
& \frac{\partial t y}{t^{2}+1}-2 t-\left(\partial-\ln \left(t^{2}+1\right)\right) \frac{d y}{d x}=0 \\
& \left(\frac{\partial t y}{t^{2}+1}-2 t\right) d x-\left(\partial-\ln \left(t^{2}+1\right)\right) d y=0 \\
& M(t, y)=\frac{\partial t y}{t^{2}+1}-2 t \\
& N(t, y)=\ln \left(t^{2}+1\right)-2 \\
& \frac{\partial M}{\partial y}=\frac{\partial t}{t^{2}+1} \\
& \frac{\partial N}{\partial t}=\frac{2 t}{t^{2}+1}
\end{aligned}
$$

So Exact Equation, Solution exists

$$
\begin{gathered}
\int_{y \text {-axis }} M d x+\int(t \operatorname{ter} \text { of } N(\operatorname{ser} q x) d y \\
\int\left(\frac{\partial t y}{t^{2}+1}-2 t\right) d t+\int-2 d y=C \\
y \ln \left(t^{2}+1\right)-t^{2}-2 y C \\
y(5)=0 \\
-(S)^{2}=C \\
C=-2 S
\end{gathered}
$$

