Department of Electrical Engineering
 Assignment
 Date: 14-04-2020

Course Details

Course Title:	Electro Magnetic Field Theory	Module:	
Instructor:	Sir rafiq mansoor	Total Marks:	30

Student Details

\qquad Student ID: 13845

Q1: Solve the following short Question	(a)	Transform the vector $B=y i(x+z) j \quad$ located at point $(-2,6,3)$ into cylindrical coordinates	Marks 2
			CLO 1
	(b)	Convert the point ($3,4,5$) from Cartesian to spherical coordinates	Marks 2
			CLO 1
	(c)	Find the spherical coordinates of $\mathrm{A}(2,3,-1)$	Marks 2
			CLO 1
	(d)	Find the Cartesian coordinates of $\mathrm{B}(4.25,120)$	Marks 2
			CLO 1
	(e)	Find the force between two charges when they are brought in contact and separated by 4 cm apart, charges are 2 nC and -1 nC , in $\mu \mathrm{N}$.	Marks 2
			CLO 2
	(f)	Find the electric field intensity of two Charges $-2 C$ and -1 C separated by a distance 1 m in air	Marks 2
			CLO 2
	(g)	Determine the charge that produce an strength of $40 \mathrm{v} / \mathrm{cm}$ at a distance of c)$10^{-8} \quad$electric field 30 cm in vacuum (in c)	Marks 2
			CLO 2
	(h)	A charge of $2 * 10^{-7} \quad C$ is acted upon by a force of 0.1 N . determine the distance to the other charge $4.5 * 10^{-7}$ of C , both the charges are in vacuum	Marks 2
			CLO 2
Q2:	(a)	Find the angle between the vectors shown in figure.	Marks 4

Now find the angie (1)

$$
D=\tan ^{-1}(y / x)=\tan ^{-1}\left(\frac{6}{-2}\right)
$$

$$
\phi=-71.56
$$

$$
z=3
$$

$$
B=(6.324 a e-71.56 a p+3 a z)
$$

(b) Convert the point $(3,4,5)$ from cartesian t B spherical coordinates.
Sol:- For spherical we have to

$$
\text { find } \quad r, \theta, \otimes
$$

$$
x=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{3^{2}+4^{2}+5^{2}}
$$

$$
\begin{align*}
& \begin{array}{l}
\text { (1) } \\
\text { Q1 (a) Transform the } V e(t) s \quad B=y i(x+z) j
\end{array} \tag{1}\\
& \text { Located at point }(-2,6,3) \text { into } \\
& \text { cylindrical coordinates. } \\
& \text { Sol:- } \quad B=y i x j+y i z j \\
& \text { Point } x=-2, y=6, \quad z=3 \\
& \text { From cartesian to cylindrical } \\
& l=\sqrt{x^{2}+y^{2}} \\
& l=\sqrt{(-2)^{2}+(6)^{2}}=\sqrt{4+36} \\
& =\sqrt{40}=6.324
\end{align*}
$$

(2)

$$
\begin{aligned}
& s=\sqrt{9+16+25}=\sqrt{50} \\
& s=7.07
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\cos ^{-1} \frac{z}{\gamma}=\cos ^{-1} \frac{5}{7007} \\
& \theta=45^{-0}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=\tan ^{-1} y / x \\
& D=\tan ^{-1}(4 / 3) \\
&\left(\gamma, \theta, 13^{\circ}\right.
\end{aligned}
$$

(c) Find the spherical coordinates

$$
A(2,3,-1)
$$

Sol:- $r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(2)^{2}+(3)^{2}+(-1)^{2}}$

$$
\begin{aligned}
& r=\sqrt{4+9+1}=\sqrt{14} \\
& r=3.74 \\
& \theta=\cos ^{-1} z / r=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \theta=\cos ^{-1} \frac{-1}{3.74}=105.5^{\circ} \\
& \theta=105.5^{-0}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \phi=\tan ^{-1}(y / x)=\tan ^{-1}(3 / 2) \\
& \phi=56.3
\end{aligned}
$$

$$
\left(\theta=3.74, \theta 1055^{\circ}, Q=56.3^{\circ}\right)
$$

(d) Find the Cartesian coordinates of

$$
B(4,25,120)
$$

Sol:- Convert to cartesian point B is actually given in spherical

$$
\text { is }(x, \theta, \Phi)
$$

$$
\text { find }(x, y, z) \text { ? }
$$

$$
\text { find }(x)
$$

$$
\begin{aligned}
& x=r \sin \theta \cos \theta \\
& x=4 \sin 25 \cos 120 \\
& x=-0.845
\end{aligned}
$$

$$
\text { find }(y)
$$

$$
\begin{aligned}
& y=r \sin \theta \sin \theta=4 \sin 25 \sin 120 \\
& y=1.463
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \text { Find }(z) \\
& z=r \cos \theta=4 \cos 25 \\
& z=3.625
\end{aligned}
$$

$$
(x, y, z)=(-0.845,1.463,3.625)
$$

(e) $\quad d=4 \mathrm{~cm}, \quad q_{1}=2 n c, \quad q_{2}=-1 n c$.

Sul:-

$$
F=\frac{K Q_{1} Q_{2}}{\gamma_{2}}
$$

where $K=\frac{1}{4 \pi \varepsilon_{0}}$

$$
\begin{aligned}
& F=\frac{q 1 q_{2}}{4 \pi 4_{0} 8^{2}} \\
& F=\frac{2 \times 10^{-9} \times-1 \times 10^{-9}}{4 \pi \times 8.854 \times 10^{-12} \times\left(9 \times 10^{-2}\right)^{2}} \\
& F=-1.123 \times 10^{-5} \\
& F=-11.23 \mu \mathrm{~N}
\end{aligned}
$$

(f)

$$
\begin{aligned}
& q_{1}=-2 c, \quad q_{2}=-1 c \\
& d=1 \mathrm{~m} \text { in Air } \Rightarrow r=1 \mathrm{~m}
\end{aligned}
$$

find $E=$?
Sol:- due to Qa

$$
\begin{aligned}
E_{1}= & \frac{q_{1}}{4 \pi \varepsilon_{0} R^{2}}=\frac{-2}{4 \pi \times 8.85 \times 10^{-12} \times(1)^{2}} \\
E_{1}= & -1.798 \times 10^{10} \mathrm{~N} / \mathrm{C} \\
& d u e \quad \mathrm{t}^{2} \\
E_{2}= & \frac{q_{2}}{4 \pi \varepsilon_{0} R^{2}}=\frac{-2}{4 \pi \times 8.854 \times 10^{-12} \times(1)^{2}} \\
E_{2}= & -8.9897 \times 10^{9} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& E=40 \mathrm{~V} / \mathrm{cm} \quad E=40 \times 100 \mathrm{~V} / \mathrm{m} \\
& E=4000 \mathrm{~V} / \mathrm{m} \\
& r=30 \mathrm{~cm} \Rightarrow r=30 \times 10^{-2} \mathrm{~m} \\
& E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\
& Q=E \times 4 \pi \varepsilon_{0} r^{2} \\
& Q=(40 \times 100)(4)(T)\left(8.854 \times 10^{-12} \mathrm{md}\left(30 \times 10^{-2} \mathrm{~m}\right)^{2}\right. \\
& Q=4 \times 10^{-8} \mathrm{C}
\end{aligned}
$$

(6)
(h)

$$
\begin{aligned}
& Q .2 \times 10^{-7}, \quad O 2=4.5 \times 10^{\circ} 7 \\
& F=0.2 \mathrm{~N} \\
& \text { distance? } \\
& F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}} \\
& R^{2}=\sqrt{\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} F}}=\sqrt{\frac{2 \times 10^{-7} \times 4.5 \times 10^{-7}}{4 \times \pi \times 8.854 \times 10^{-12} \times 0.1}} \\
& R^{2}=\sqrt{8.088 \times 10^{-3}} \Rightarrow R=8.088 \times 10^{-3} \\
& R=0.0899 \mathrm{~m}
\end{aligned}
$$

Q2: (a)
Sol:-

$$
\begin{gathered}
A \cdot B=|A||B| \cos \theta_{A B} \\
|A|=2,|B|=2 \\
2 \sqrt{3}=|2||2| \cos \theta_{A B} \\
\theta_{A B}=\cos ^{-1}\left(\frac{2 \sqrt{3}}{12| | 2 \mid}\right) \\
\theta_{A B}=30^{\circ}
\end{gathered}
$$

$$
\text { Q(a)(b) i) } f-a x^{\prime}+b y^{\prime}=
$$

Sol:- So, $f=a x^{2}+b y^{\prime}$ e

$$
\begin{aligned}
& \nabla f=\left(\frac{\partial i}{\partial x}+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right)\left(a x^{2}+b y^{3} z\right) \\
& \nabla f=\frac{\partial}{\partial x} a x^{2} i+\frac{\partial}{\partial y} b y^{3} z j+\frac{\partial}{\partial z} b y^{3} z k \\
& \nabla f=2 a x i+3 b z y^{2} j+b y^{3} k \\
& \nabla f=2 a x i+3 b z y^{2} j+b y^{3} k
\end{aligned}
$$

(ii) $f=a r^{2} \sin \theta+b r z \cos \theta \theta$

Sol:- gradient in case of spherical

$$
\begin{aligned}
& \nabla f=\frac{\partial f}{\partial r} \hat{\gamma}+\frac{1}{r} \frac{\partial f}{\partial \mathbb{Q}} \hat{\theta}+\frac{1}{\partial \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi} \\
& \nabla f= \\
& \frac{\partial}{\partial r}\left(a r^{2} \sin \phi+b r z \cos 2 \phi\right) \hat{r}+\frac{1}{\gamma} \frac{\partial}{\partial \theta} \\
& \left(a r^{2} \sin \phi+b r z \cos \partial \phi\right) \hat{\theta}+\frac{1}{r \sin \theta} \cdot \frac{a}{\partial \phi} \\
& \left(a r^{2} \sin \phi+b r z \cos 2 \phi\right) \hat{\phi}
\end{aligned}
$$

Then Now,

$$
\begin{aligned}
\nabla f= & (2 \operatorname{arsin} \phi+b z \cos \alpha \phi) \hat{\gamma}+\frac{1}{r}(0)+\frac{1}{r \sin \phi} \\
& \left(a s^{2} \cos \phi-2 \text { br } z \sin \phi\right) \hat{\phi}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \nabla f=(2 \operatorname{ar} \sin \phi+b z \cos 2 \phi) \hat{\gamma} \\
& +\frac{1}{r \sin \phi}\left(a r^{2} \cos \phi-2 b r z \sin \phi\right) \hat{\phi}
\end{aligned}
$$

Now In case of cylindrical

$$
\begin{aligned}
\nabla f=\frac{\partial f}{\partial p} \hat{\phi} & +\frac{1}{p} \frac{\partial f}{\partial \phi} \hat{\phi}+\frac{\partial A_{2}}{\partial z} \\
\nabla f=\theta \hat{p}+ & \frac{1}{p}\left(\operatorname{ar}^{2} \cos \phi-2 \operatorname{br} \sin 2 \phi\right) \hat{\phi} \\
& +(\operatorname{brcos} 2 \phi)^{\hat{z}}
\end{aligned}
$$

Then the first term is zero (0),

$$
\begin{gathered}
\Delta f=\frac{1}{l}\left(\operatorname{ar}^{2} \cos \phi-2 b r 2 \sin 2 \phi\right) \hat{\phi} \\
+(\operatorname{brcos} 2 \phi) \hat{z}
\end{gathered}
$$

$Q(3)$
Ans: Sol:-

So $E_{2}=E_{3}$ are both charges same

So, x-component becomes

$$
\begin{aligned}
\vec{E}_{2+3}= & 2 \vec{E} \cos \theta \rightarrow e q(i) \\
& \text { Now, } \quad E=\frac{Q}{\gamma^{2}}
\end{aligned}
$$

and (r) from phythagorus theorm

$$
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}} \\
& E=\frac{K Q}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

So eq (i) become

$$
\begin{aligned}
E_{a+3} & =2 \frac{k Q}{\sqrt{a^{2}+b^{2}}} \cos \theta \\
\text { Now } E_{1} & =-\frac{k Q}{r^{2}} \\
E_{1} & =-\frac{k Q}{b^{2}}
\end{aligned}
$$

Total Electric field intensity at that point is:-

$$
\begin{aligned}
& E=E_{1}+E_{2+3} \\
&=2 \frac{k Q}{\sqrt{a^{2}+b^{2}}} \cos \theta-\frac{k Q}{b^{2}} \\
& E= k Q\left(\frac{2}{\sqrt{a^{2}+b^{2}}} \cos \theta-\frac{1}{b^{2}}\right) \\
& \text { where } K=\frac{1}{4 \pi \varepsilon_{0}}
\end{aligned}
$$

