Department of Electrical Engineering Assignment

<u>Course Details</u>						
Course Title:	Electro Magnetic Field Theory	Module:				
Instructor:	Sir rafiq mansoor	Total Marks:	30	<u>.</u>		

Student Details

Name: Talha Khan Student ID: 13845

Q1: Solve the	(a)	Transform the vector $B = yi (x + z)j$ located at point (-2,6,3) into	Marks 2
following short Question		cylindrical coordinates	CLO 1
	(b)	Convert the point (3,4,5) from Cartesian to spherical coordinates	Marks 2
			CLO 1
	(c)	Find the spherical coordinates of A(2,3,-1)	Marks 2
			CLO 1
	(d)	Find the Cartesian coordinates of B(4.25,120)	Marks 2
			CLO 1
	(e)	Find the force between two charges when they are brought in contact	Marks 2
		and separated by 4cm apart, charges are 2nC and -1nC, in μN .	CLO 2
	(f)	Find the electric field intensity of two Charges -2C and -1C separated	Marks 2
		by a distance 1m in air	CLO 2
	(g)	Determine the charge that produce an 10 ⁻⁸ electric field	Marks 2
		strength of 40 v/cm at a distance of 30cm in vacuum (in c)	CLO 2
	(h)	A charge of $2 * 10^{-7}$ C is acted upon by a force of 0.1N. determine	Marks 2
		the distance to the other charge $4.5*10^{-7}$ of C, both the charges are in vacuum	
Q2:	(a)	Find the angle between the vectors shown in figure.	Marks 4

Q1 (a) Transform the vector B=yi(x+z)j

Located at Point (-2,6,3) into

cylindrical coordinates.

Sol:-
$$B = yi \times j + yizj$$

Point $x = -\lambda$, $y = 6$, $z = 3$

From caxtesian to cylindsical

 $L = \sqrt{x^2 + y^2}$
 $L = \sqrt{(-\lambda)^2 + (6)^2} = \sqrt{4 + 36}$
 $L = \sqrt{4} = \sqrt{4}$

Now find the angle 0
 $0 = \tan^{-1}(y/x) = \tan^{-1}(\frac{6}{2}x)$
 $0 = -71.56$
 $0 = -71.56$
 $0 = -71.56$
 $0 = -71.56$

(b) Convert the point (3,4,5) from Castesian to spherical coordinates. Solo- For spherical we have to find 8, 9, 0 $8 = \int x^2 + y^2 + z^2 = \int 3^2 + 4^2 + 5^2$

$$8 = 9 + 16 + 35 = 50$$

$$3 = 7.07$$

$$9 = \cos^{-1} \frac{z}{8} = \cos^{-1} \frac{z}{7.07}$$

$$9 = \tan^{-1} \frac{y}{n} = \tan^{-1} \left(\frac{y}{3}\right)$$

$$9 = \frac{53.13^{\circ}}{3.13^{\circ}}$$

$$(8, 9, 9) = \frac{7.07}{3.74}, \frac{53.13^{\circ}}{3.74}$$

$$(8) = \frac{1}{3.74}$$

$$8 = \frac{1}{3.74}$$

$$9 = \cos^{-1} \frac{z}{3.74} = \cos^{-1} \frac{z}{3.74}$$

$$9 = \cos^{-1} \frac{z}{3.74} = \cos^{-1} \frac{z}{3.74}$$

D=105.50

$$\varphi = \tan^{-1}(\frac{9}{4}) = \tan^{-1}(\frac{3}{4})$$

$$[\varphi = 56.3^{\circ}]$$

$$(3 = 3.74, \Theta = 105.5^{\circ}, \varphi = 56.3^{\circ})$$

(d) Find the (astesian coordinates of
$$B(y, as, 100)$$

Sol:- convert to cartesian Point B
is actually given in spherical
ie (s, θ, φ)

find (x, y, z) ?

find (x)
 $x = x sin\theta cos\theta$
 $x = 4 sinas cos 120$
 $x = -0.845$
 $x = -0.845$

$$F = 2 \times 10^{-9} \times -1 \times 10^{-9}$$

$$4 \times 8 \cdot 854 \times 10^{-12} \times (4 \times 10^{-2})^{2}$$

(f)
$$q_{1}=-2c$$
, $q_{2}=-1c$
 $d=1m$ in Air =7 $8=1m$

$$E_1 = \frac{Q_1}{4\pi \xi_0 R^2} = \frac{-2}{4\pi \times 8.85 \times 10^{12} \times (1)^2}$$

$$E_2 = \frac{2i}{4\pi 4.8} = \frac{-1}{4\pi \times 8.854 \times 10^{12}} (1)^2$$

$$\Theta = (40 \times 100)(4)(7)(8.854 \times 10^{12})(30 \times 10^{2})$$

$$R^{2} = \begin{cases} Q_{1}Q_{2} \\ 4\pi 2 \circ R^{2} \end{cases} = \begin{cases} Q_{2}Q_{2} \\ 4\pi 2 \circ F \end{cases} = \begin{cases} Q_{2}Q_{2} \\ 4$$

Qa: (a)
$$A = \sqrt{3} in + iy$$

$$B = 2in$$

$$A \cdot B = 2\sqrt{3}$$

$$B = 2i^{2}$$

$$A \cdot B = 2\sqrt{3}$$

$$A \cdot B = |A||B| \cos \Theta_{AB}$$

$$\int \Theta_{AB} = 36^{\circ}$$

Sol:- So,
$$f = ax^{i} + by^{i}z$$

$$\nabla S = \left(\frac{\partial i}{\partial x} + \frac{\partial}{\partial y} \right) + \frac{\partial}{\partial z} k \left(ax^{i} + by^{i}z\right)$$

$$\nabla S = \frac{\partial}{\partial x} ax^{i} + \frac{\partial}{\partial y} by^{i}z + \frac{\partial}{\partial z} by^$$

(iii)
$$f = as^2 sin \theta + bsz cos \partial \theta$$

Sol: - $gsadient$ in case of spherical

$$\nabla f = \frac{\partial f}{\partial r} \stackrel{\circ}{\delta} + \frac{1}{r} \frac{\partial f}{\partial \theta} \stackrel{\circ}{\theta} + \frac{1}{\partial sin \theta} \frac{\partial f}{\partial \phi} \stackrel{\circ}{\theta}$$

$$\nabla f = \frac{\partial}{\partial s} (as^2 sin \phi + bsz cos \partial \phi) \stackrel{\circ}{\delta} + \frac{1}{r} \frac{\partial}{\partial \theta}$$

$$(as^2 sin \phi + bsz cos \partial \phi) \stackrel{\circ}{\theta} + \frac{1}{r} sin \theta \frac{\partial}{\partial \phi}$$

$$(as^2 sin \phi + bsz cos \partial \phi) \stackrel{\circ}{\theta} + \frac{1}{r} sin \theta$$

$$\nabla f = (2ar sin \phi + bz cos \partial \phi) \stackrel{\circ}{\theta} + \frac{1}{r} sin \theta$$

$$(as^2 cos \phi - \partial bsz sin \phi) \stackrel{\circ}{\phi}$$

So, $\nabla f = \left(2 as sin p + bz \cos 2 p \right) \hat{s}$ $+ \frac{1}{s \sin \theta} \left(as^2 \cos \theta - 2 bs z \sin \theta \right) \hat{\phi}$

Now In case of cylindrical

 $\nabla f = \frac{\partial f}{\partial P} \hat{\phi} + \frac{1}{P} \frac{\partial f}{\partial Q} \hat{\phi} + \frac{\partial A_2}{\partial z}$

Vf=OP + p (ar coso - 2 brz sin 20) 2 + (brcos 20) 2

Then the first term is zero (o),

 $Df = \frac{1}{\rho} \left(ar^2 \cos \phi - 2 b \sigma z \sin \partial \phi \right) \hat{\phi}$ $+ \left(br \cos \partial \phi \right) \hat{z}$

Q(3)

Ans: Sol:

So Ez=Ez are both charges Same

So, x-component becomes

 $\vec{E}_{z+3} = \vec{A}\vec{E} \cos \Theta \rightarrow \mathcal{O}(\vec{l})$ NoW, E = KQ

and (8) from Phythagorus theorm

$$y = \sqrt{a^2 + b^2}$$

E= KQ

$$\sqrt{a^2+b^2}$$

NOW
$$E_1 = -\frac{KQ}{K^2}$$

$$E_1 = -\frac{KQ}{b^2}$$

Total Electric field intensity at that point is:

$$E = E_1 + E_{2+3}$$

$$= 2 \frac{KQ}{\sqrt{a^2 + b^2}} (050 - \frac{KQ}{b^2})$$

$$E = RQ\left(\frac{2}{\sqrt{a^2 + b^2}} \cos \varphi - \frac{1}{b^2}\right)$$
where $R = \frac{1}{4\pi \xi_0}$