Department of Electrical Engineering Final Assignment Date: 23-06-2020

Course Detail							
Course Title: <u>Electro Magnetic Field Theory</u>	Module:						
Instructor: Sir Dr Rafig Mansoor	Total Marks:	50	·				

Student Details

Name: Saad Bin Tarig	Student ID:	5534

Q1: Solve the	(a)	Determine the magnetic field at the center of the semicircular	Marks 10
following short Question		piece of wire with radius 0.20m. The current carried by the semicircular of wire is 150A.	CLO 2
	(b)	A circular coil of radius 5×10^{-2} m and with 40 turns is carrying	Marks 10
		a current of 0.25 A. Determine the magnetic field of the circular coil at the center.	CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a	Marks 07
		circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	CLO 2
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V = 100$	Marks 08
		$100+50\rho+150\rho$ Sin ϕ V. (a) Find V, E, D, and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	CLO 2
Q3:		Given the time-varying magnetic field $B = (0.5 + 0.6 - 0.3)$	Marks 15
	(a)) and a square filamentary loop with its corners at (2, 3, 0), (2,-3,0), and (-2,3,0) and (-2,-3,0), find the time-varying current flowing in the general direction if the total loop resistance is .	CLO 3

Student Name: Saad Bin Tariq ID: 5534 Department: BE(E) Subject: Electromagnetic Field Theory Teacher : Sir Dr Rafiq Mansoor

SAAD BIN TARIQ ID: 5534 PAHNOY QNOI Solve the following Short Questions:-FART H: Optimine the magnetic field at the center of the semicincular piece of wire with Gradius O.2m. The current carried by the Semicircular of wire is 150A. PASWER:-The radius of the semicircular piece of wire = 0.2m Current carried by semicircular piece of WINE = ISOA Magnetic field is given as B= MONI The difference between Biot-Savart Law is given by $dB = \frac{\mu_0 T}{4\pi} \frac{d\bar{I}\sin\theta}{\gamma^2}$ B= llo IS dIxi = $\frac{\mu_0}{\mu_5} \frac{1}{\gamma^2} \int d\bar{t}$

ID 5534 Pg#No Z SAAD BIN TARIQ $= \underbrace{II0}_{U\overline{D}} \quad \overline{I} \quad \overline{A}Y$ = 101 4x = 41×107 T.m/A (150A) 4(0.20m) = 2.4×10-4T QNOY PART B:-A circular coil of radius 5x10°m and with 40 turns is carying a current of ORISA. Determine the magnetic field of the circular coil at center. FINSWER :-The radius of the circular coil = $5 \times 10^{-2} \text{ m}$ Number of turns of the circular coil = 40 Correct carried by the circular coil = 0.25A Magnetic field is given by B= MONI

SAAD BIN TARIA ID= 5534 Pg# No 3 = 41 × 10-7 T.m (A (40) 0.25 A 2.50 × 102 m = 1.2 × 10-4 T/ ANS GNOZ PART A:-Compute the magnetic field of a long Straight wire that has a circular loop with a radius of 0.05m. Zamp is the reading of the current flowing through this loop. ANSWER :-GIVEN DATA:-Radius = R= 0.05m I = 2amp $M_0 = 4\pi \times 10^7 N/A^2$ Aperes law formula is $\int \vec{B} d\vec{I} = u_0 \vec{I}$ In this case of long straight wire. 6 di = ZAR = 2x3.14×0.05

SAAD BIN TARIA ID=5534 Pg # No 4 = 0.314 B 6 dI = 40 I B = MoI B= 47 × 10 + ×2 0.314 = 8×10-6T QNOZ PART "B" Within the cylinder $p=2, 0 \le z \le 1$, the potential is given by V = 100 + 50 p + 150 pSin $\phi V \cdot (a)$ Find V, E, D and pv at P(1, 60), 0.5) in free space. (b) How much charge lies within the cylinder. Part(a):== - dv ap - 1 dv ad op p de = - [50+150 sind]ap -[150 cosd]ad

SADD BIN TARIA ID: 5534 Pg#No 5 Evaluate the above P to find ED Ep=-179.9ap-75.0ap V/m Now D = EOE, SO DP = - 1.59ap -. 664ap nC/m2 Ru=V.D=(1)d (PDp]+1 2Dd P Ddp P p 20 = [-1 (50 + 150 sin \$) + 1 150 sin \$]E0= 50 E0C At P, this is pup=-443pC/m3 Part (b) How much charge lies within the cylinder? We will obtained integrate po over the volvene to obtain: $Q = \int_{a}^{1} \int_{a}^{2\overline{h}} \int_{a}^{2\overline{h}} - \underline{50} \underline{c}_{0} \quad Pd Pd \varphi dz$ 27 (50)En (2) = - 5.5606

SAAD BIN TARIA ID 5534 Pg # No 6 DN03 Given the time varing magnetic field B= (0.6x+0.6ay-0.3az) cos socot T and a square filamentary loop with its corners at (2,3,0), (2,-3,0), and (-2,3,0) And 125 find the time varying curvent Howing in the general ad direction if the total loop & resistance is 40001 ~ D Solution : $emf = \oint E dL = -d\phi = -d$ B.az da = d (0.3)(4)(6) cos Sooot Loop area Where the loop normal is chosen as positive az B that the path integral for E is taken arround the positive as direction. Taking the the denative, we find. ent = - 7-215000) Sin Sooot So that I= enf = -36000-sin Sooot 400 × 103 = - 90 Sin Socot mA