Engineering Mechanics

Final paper

Submitted By: Muhammad Adeel

Class ID: 16115

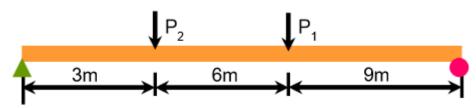
Section: A

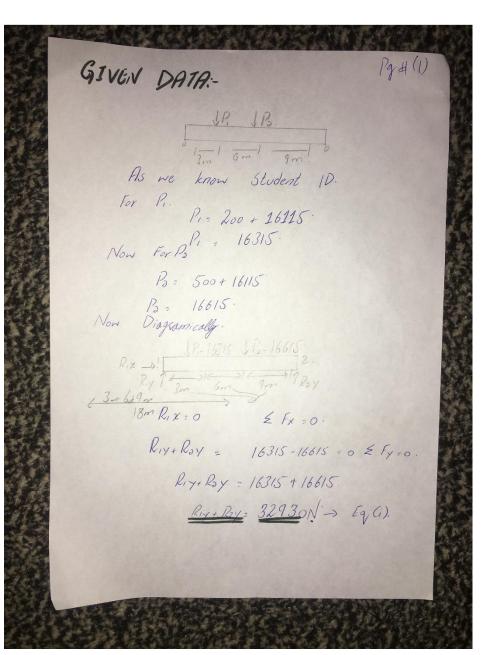
Instructor: Engr. M.Majid Naeem

Department: Civil Engineering

Semester: 2

Dated: 27-06-2020

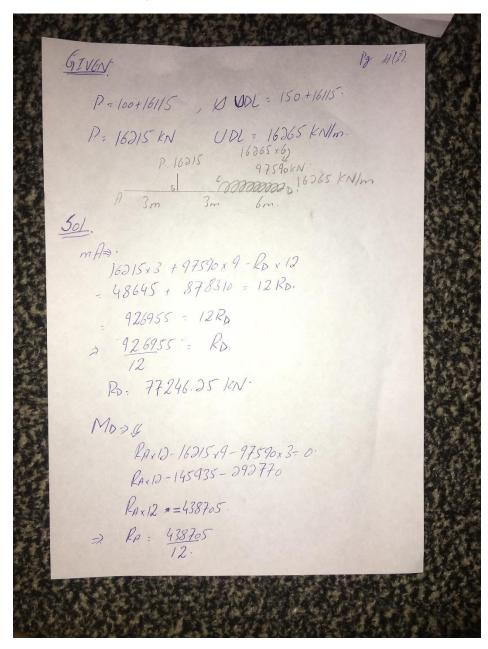

Signature

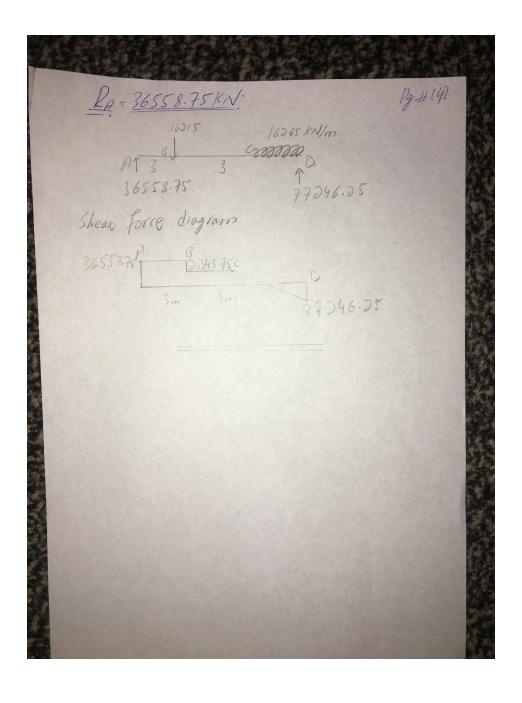


IQRA NATIONAL UNIVERSITY
HAYATABAD, PESHAWAR

Q1: Find the support reactions, Show all your calculations.

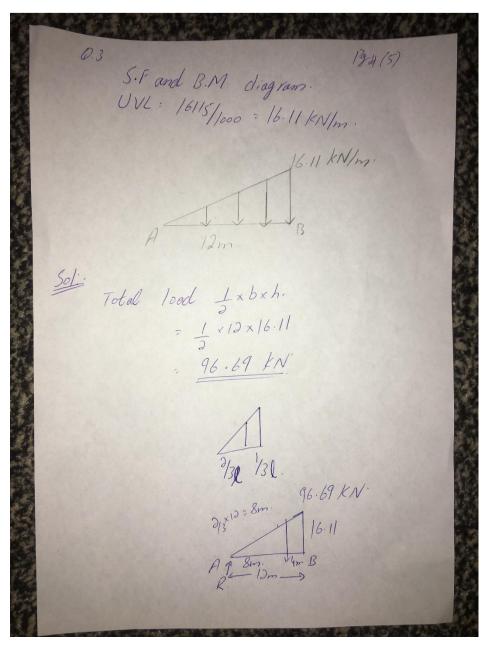
(P1 = 200 + Student ID No), (P2 = 500 + Student ID No)

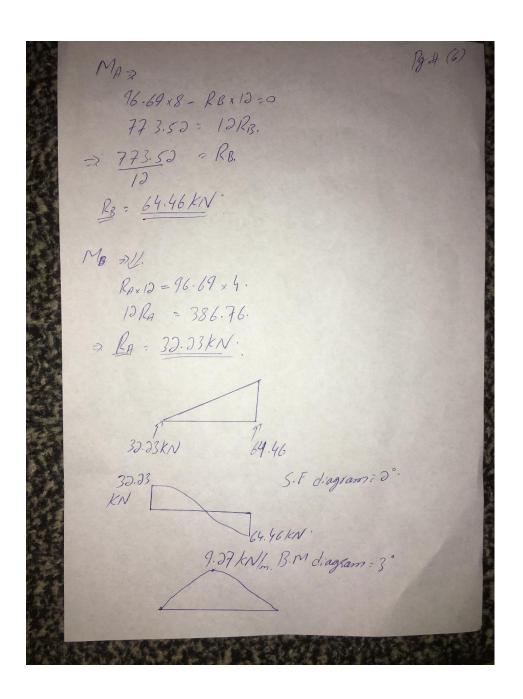


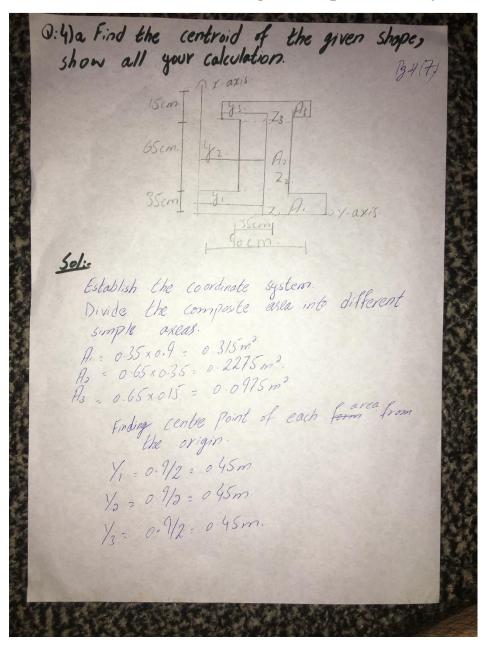


Riy: [(16315×4)+(16615×15)] Pg#(2) Riy: 146835+249225 Riy: 396060 By: 22003.3N. → eq(2). Put ey (2) in ey(1), we get Riy+Roy: 32930. 220033+Ray = 32930. > Roy: 32930 - 22003.3. Rof : 10926.7 N. RIX: ON, RIX- 22003.3 N, Roy: 109767N.

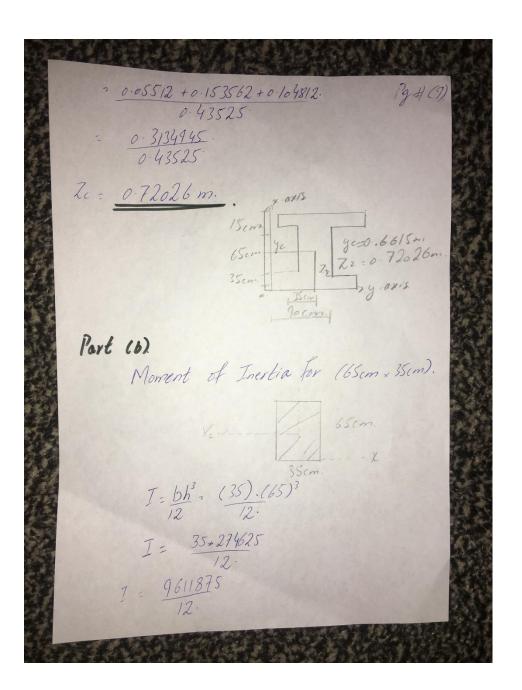
Q2: Draw the neat shear force diagram, Show all your calculations.


(P = 100 + Student ID No), (UDL = 150 + Student ID No)




Q3: Draw the neat shear force and bending moment diagrams, Show all your calculations.

(UVL = Student ID No / 1000)



Q4 (a) Find the centroid of the given shape, Show all your calculations

Now For Z. Zi = 0.35/2 = 0.175m Pg 4/8) Z3 = 035+(0.65/3) = 0.35+0.325 = 2.675m Z3 = 035+0.65+015/3 = 035+0.65+0.075 Z3: 1.075 m. Yc = A14, + A3 /3 + A3 /3.

A1 + A3 + A3. 2 (0.315 x0 45m)+(0.2275 v0.45m)+ (0.0975 x0.45m). 0.315 + 0.2275 + 0.0975 = 0.1417 +0.10237 + 0.04387. 0.43525 0.28794. 1c : 0.6615 m. Ze = 7 A.Z. + A.Z. + A.Z. 23. Zc - (0.315 x0.175m) + (0.2275+0.675m)+(0.0975x1.075m)
0.43525.

Pg # /0) J = 800 989.58cm5 Radius of gyration. $Y_{x_b} = \frac{h}{\sqrt{12}} = \frac{65}{\sqrt{12}} = 18.76 \text{ cm}$. $Y_{y_b} = \frac{b}{\sqrt{12}} = \frac{35}{\sqrt{12}} = 10.1 \text{ cm}$. $Y_{x_b} = \frac{b}{\sqrt{12}} = \frac{35}{\sqrt{12}} = 37.52 \text{ cm}$. Section modulus: S = 6h3 $5 = \frac{35 \times (65)^{\circ}}{6}$ $5 = \frac{35 \times 4225}{6}$ $5 = \frac{147875}{6}$ $5 = \frac{24645.83 \text{ cm}^{3}}{6}$

Q5: Explain work, energy and power in details along with practical examples from daily life.

WORK

Work may be defined as (When a force act on a body, it displaces a body in the direction of force then work is said to be done)

OR

The scalar product of force and displacement is known as work.

SYMBOL

It is denoted by 'w'

MATHEMATICALLY

Mathematically it can be written as

Work = force . displacement

 $W = F \cdot S$

It is a transfer of energy. The work is done on object when we transfer energy to that object.

UNIT

The S.I unit of work is Joule "J"

The work done will be 1 Joule if a unit of force act on a body and displace it through a unit distance in the direction of force

J = N.m

QUANTITY

It is a scalar quantity

EXAMPLE

Pushing the table over ground it cover some distance.

Pushing a car horizontally from rest.

Walking up stairs

ENERGY

The ability of a body to do work is called energy

TYPES OF ENERGY

There are two types of energy

Kinetic Energy

Potential Energy

MATHEMATICALLY

Mathematically it can be written as

 $E=mc^2$

EXAMPLE

Example of energy is "energy obtained from batteries and generators"

Burning of fire transfer heat energy

Light energy is also example of energy

UNIT

The unit of energy is same as that of the work i.e. "J"

POWER

It is the time rate of doing work is called power

OR

The work done in a unit time is known as power

SYMBOL

It is denoted by "P"

MATHEMATICALL FORM

It can be written as

P = w/t

UNIT

The S.I unit of power is watt (w)

The power will be one watt if a unit work is done in a unit time

1 watt = 1 joule/1 sec

1 watt= 1 J/1 sec

 $W = J. S^{-1}$

EXAMPLE

Solar energy can be used to power road signs.

Shuttle puts out a few GW (Giga-watts, or $10^9\,\mathrm{W}$) of power.