

Name: Sangar
ID: 15570
Subject: Construction financial management
Instructor Name: Dr.Engr. Muhammad Zeshan
Date:30/Jun/2020

Problem 1: A construction company will replace an excavator after 5 years. A new one costs $\$ 250,000$. How much is the end-of-year annual uniform payment the company has to put into a bank in order to save enough money in five years' time for purchasing the equipment if the bank is offering an interest rate of 4% per annum?

Solution of Problem01:

Uniform series compound amount: we have only considered a principle sum of single payment. Now we begin to see a series of uniform payment. For a series of uniform payment, let A=Periodic uniform payment made at the end of each period continues for n period to accumulate a sum S .

The situation will be presented by solving of below example:

We have bear in mind that the excavator always costs $\$ 250000$, whether now or five years, as the inflation-free assumption has been made.

$$
250,000=A \times\left[\frac{(1+0.04)^{5}-1}{0.04}\right]=A * 5.4163
$$

$$
A=\frac{250000}{5.4163}=\$ 46157
$$

Hence, $\underline{A}=\$ 46157$

Problem 2: A construction material company makes and sells window panels. The selling price per panel is $\$ 900$. The variable cost for making the window panels is $\$ 500$ per unit. The fixed cost is $\$ 8,000,000$. Find the BEP (break-even point)?

Solution of Problem02:

BEP: The break-even point in economic, business and specially cost accounting-is the point at which total cost and total revenue are equal, i.e. even there is no net loss of gain.
$\mathrm{P}=$ Selling price per unit= $\$ 900$
$\mathrm{v}=$ Variable cost per unit=\$500
FC= Fixed cost=\$8,000,000
As per below table we can express:

Volu me	$\mathrm{X}=18,000$	$\mathrm{X}=20,000$	$\mathrm{X}=22,000$
TR	$900 \times 18000=\$ 16,200$, 000	$900 \times 20,000=\$ 18,000$, 000	$900 \times 22,000=\$ 19,800$, 000
Vari able cost	$500 \times 18000=\$ 9,000$, 000	$500 \times 20,000=\$ 10,000$, 000	$500 \times 22,000=\$ 11,000$, 000
Fixe d cost	$\$ 8,000,000$	$\$ 8,000,000$	$\$ 8,000,000$
Total cost	$9,000,000+8,000,00$	$10,000,000+8,000,00$ $0=17,000,000$	$11,000,000+8,000,00$ $0=19,000,000$
Net inco me	$9,000,000-17,000,000=$	$18,000,000-18,000,000=$ $(800,000($ loss $)$	$19,800,000-19,000,000=$ 800,000 (Profit)

From above table we can say break-even point is at $x=20,000$ unites so if x is smaller than 20,000 units the company will suffer a loss if the x is greater than 20,000 units, the company will have profit.

If we find the maximum profit per year then we can find the BEP percentage at the company's capacity for example company has maximum profit at making of total 25,000 units windows panels in a year so $B E P=\frac{20,000}{25,000}=0.8=80 \%$ so we say that the BEP is at 80% of the company's capacity.

The break-even chart is as below:

No of units of windows panels

