Department of Electrical Engineering Final Assignment

Date: 23-06-2020

Course Details

Course Title:	Electro Magnetic	Field Theory	Module:	6th	_
Instructor: <u>Dr</u>	Rafiq Mansoor.		Total Marks:	50	<u>.</u>

Student Details

Name: <u>Talha Khan.</u> Student ID: <u>13845</u>

Q1: Solve the	(a)	Determine the magnetic field at the center of the semicircular	Marks 10
following short Question		piece of wire with radius 0.20m. The current carried by the semicircular of wire is 150A.	CLO 2
(b) A circ		A circular coil of radius 5×10^{-2} m and with 40 turns is carrying	Marks 10
		a current of 0.25 A. Determine the magnetic field of the circular coil at the center.	CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a	Marks 07
		circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	CLO 2
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V = 100 \cdot 50 \cdot 150 \cdot$	Marks 08
		$100+50\rho+150\rho \ Sin\phi \ V$. (a) Find V , E , D , and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	CLO 2
Q3:		Given the time-varying magnetic field B= $(0.5 + 0.6 - 0.6)$	Marks 15
	(a)	0.3) and a square filamentary loop with its corners at (2, 3, 0), (2,-3,0), and (-2,3,0) and (-2,-3,0), find the time-varying current flowing in the general direction if the total loop resistance is	CLO 3

 $\Theta(1)$ (a)

Sol:- The radius of the semicircular

Piece of wire= 0.20m

Current carried by the semicircular

Piece of wire = 150 A

Magnetic field is given as:

B= HoNI

The differential from of Biot-Squart law is given as: $dB = \frac{\text{MoI}}{4\pi} \frac{\text{dIsin}\theta}{\pi^2}$ $B = \frac{\text{Mo}}{4\pi} I \int \frac{\text{dI} \times \hat{x}}{x^2} = \frac{\text{Mo}}{4\pi} \frac{I}{x^2} \int \text{dI}$ $= \frac{\text{Mo}}{4\pi} \frac{I}{x^2} \pi r = \frac{\text{MoI}}{4r} = \frac{4\pi \times 10^{-7} \text{T.m.} IA(150A)}{4r}$ $dB = 2.4 \times 10^{-4} \text{T}$

Page (2)

Q(1) (b) Sol: The radius of the circular $coil = 5 \times 10^{2} m$

Number of turns of the circular Coil = 40 turns

Current carried by the circular coil = 0.25AMagnetic field is given as: $B = \mu_0 \frac{NI}{Z_0}$

 $= \frac{4\pi \times 15^{7} \text{ T.m/A } (40)0.25^{7} \text{ A}}{2.50 \times 15^{2} \text{ m}}$

B= 1.2 x 10-4 T

Ampere's law formula is

In this case of long straight wire

$$\oint d\vec{l} = 211R = 2 \times 3.14 \times 0.05 = 0.314$$

$$B \oint \vec{dI} = u_0 \vec{I} \implies \vec{B} = \underbrace{u_0 \vec{I}}_{2\pi R}$$

$$\vec{B} = \frac{4\pi \times 10^{-7} \times 2}{0.314} = 8 \times 10^{-6} \text{ T}$$

Q(2) (b)

Sol: - (a) Find V, E, D, and P_V of P (1, 60°, 0.5°) in free space: First Substituting the given point, we find $V_P = 279.9V$. Then

 $E = -\nabla V = -\frac{\partial V}{\partial \rho} a \rho - \frac{1}{\rho} \frac{\partial V}{\partial \rho} a \rho = [50 + 150 sin \rho]$ $\alpha \rho - [150 \cos \rho] a \rho$

Evaluate the above at P to find Ep $E_{P} = -179.9a_{P} - 75.0a_{p} V/m$

Now D= E0 E, 50 Dp = -1.59ap -.66 4ap n C/m?
Then,

Page (5)

$$P_{v} = \nabla \cdot D = \left(\frac{1}{P}\right) \frac{d}{dp} \left(PD_{p}\right) + \frac{1}{P} \frac{\partial D_{q}}{\partial p}$$

$$= \left[-\frac{1}{P}\left(50 + 150 \sin p\right) + \frac{1}{P} 150 \sin p\right]$$

$$\epsilon_{0} = -\frac{50}{P} \epsilon_{0} c$$

At P, this is P, p = -443 PC/m3

(b) How much Charge lies within the (ylinder? we will integrate Pr over the volume to obtain:

$$Q = \int_0^1 \int_0^{2\pi} \int_0^2 - \frac{5060}{p} p dp dp dz = -5.56nC$$

Page (6)

$$emf = \oint E \cdot dL = -\frac{d\varphi}{dt} = -\frac{d}{dt} \iint_{loop\ area}$$

$$B \cdot q_z da = \frac{d}{dt} (0.3)(4)(6) \cos 5000t$$

where the loop normal is chosen as Positive az, so that the Path integral for Eis taken around the Positive ap direction. Taking the derivative, we find

$$emf = -7.2 (5000) sin 5000t$$
 So then
$$I = \frac{emf}{R} = -36000 sin 5000t$$

$$\frac{400 \times 10^{-3}}{}$$