Department of Electrical Engineering

Final Assignment
Date: 23-06-2020

Course Details

Course Title: Electro Magnetic Field Theory

Module:
6th

Instructor: Dr Rafiq Mansoor.
Total Marks: \qquad

Student Details

Name: Talha Khan.
Student ID: 13845

Q1: Solve the following short Question	(a)	Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20 m . The current carried by the semicircular of wire is 150A.	Marks 10
			CLO 2
	(b)	A circular coil of radius $5 \times 10^{-2} \mathrm{~m}$ and with 40 turns is carrying a current of 0.25 A . Determine the magnetic field of the circular coil at the center.	Marks 10
			CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05 m . 2amp is the reading of the current flowing through this closed loop.	Marks 07
			CLO 2
	(b)	Within the cylinder $\rho=2,0<z<1$, the potential is given by $V=$ $100+50 \rho+150 \rho \operatorname{Sin} \phi V$. (a) Find V, E, D, and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	Marks 08
			CLO 2
Q3:	(a)	Given the time-varying magnetic field $\mathrm{B}=(0.5+0.6-$ 0.3) and a square filamentary loop with its corners at $(2,3,0),(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general direction if the total loop resistance is	Marks 15
			CLO 3

Page (1)
$Q(1) \quad(a)$
Sol:- The radius of the semicircular

$$
\text { Piece of wire }=0.20 \mathrm{~m}
$$

current carried by the semicircular
Piece of wire $=150 \mathrm{~A}$
Magnetic field is given as:

$$
B=\frac{\mu_{0} N_{1}}{2_{a}}
$$

The differential from of Biot-Savart law is given as: $d B=\frac{\mu_{0} I}{4 \pi} \frac{\alpha / \sin \theta}{\gamma^{2}}$

$$
\begin{gathered}
B=\frac{\mu_{0}}{4 \pi} I \int \frac{d I \times \hat{\gamma}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{I}{r^{2}} \int d I \\
=\frac{\mu_{0}}{4 \pi} \frac{I}{\gamma^{2}} \pi r=\frac{\mu_{0} I}{4 r}=\frac{4 \pi \times 10^{-7} T m / A(15 \overline{0} A)}{4(0.20 m)} \\
d B=2.4 \times 10^{-4} T
\end{gathered}
$$

Page (2)
$Q(1)$ (b)
Sol:- The radius of the circular

$$
\text { coil }=5 \times 10^{-2} \mathrm{~m}
$$

Number of turns of the circular

$$
\text { coil }=40 \text { turns }
$$

Current carried by the circular coil $=0.25^{\circ} \mathrm{A}$ Magnetic field is given as: $B=\mu_{0} \frac{N I}{2_{a}}$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}(40) 0.25^{-} \mathrm{A}}{2.50 \times 10^{-2} \mathrm{~m}} \\
& B=1.2 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

Page (3)
$Q(2)(a)$
Sol:-

$$
\text { Given }=\quad \begin{aligned}
R & =0.05 \mathrm{~m} \\
1 & =2 \mathrm{amp} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}
\end{aligned}
$$

Ampere's law formula is

$$
\oint \vec{B} \overrightarrow{d l}=\mu_{0} I
$$

In this case of long straight wire

$$
\begin{aligned}
& \oint \overrightarrow{d I}=2 I I R=2 \times 3.14 \times 0.05=0.314 \\
& B \oint \overrightarrow{d I}=\mu_{0} I \Rightarrow \vec{B}=\frac{\mu \cdot I}{2 \pi R} \\
& \vec{B}=\frac{4 \pi \times 10^{-7} \times 2}{0.314}=8 \times 10^{-6} \mathrm{~T} \\
& \vec{B}=8 \times 10^{-6} \mathrm{~T}
\end{aligned}
$$

Page (4)
$Q(2) \quad(b)$

Sol:- (a) Find v, E, D, and p_{v} at $P\left(1,60^{\circ}, 0.5^{-}\right)$in free space: First substituting the given point, we find

$$
\begin{aligned}
v_{p} & =279 \cdot 9 v . \text { Then } \\
E=-\nabla v & =-\frac{\partial v}{\partial p} a_{p}-\frac{1}{p} \frac{\partial v}{\partial \phi} a_{\phi}=[50+1 \operatorname{sos} \sin \phi] \\
& a_{p}-[150 \cos \phi] a_{\phi}
\end{aligned}
$$

Evaluate the above at P to find E_{p}

$$
E_{p}=-179.9 a_{p}-75.0 a_{\phi} \mathrm{v} / \mathrm{m}
$$

Now $D=\epsilon_{0} E$, so $D_{p}=-1.59_{p}-.664 a_{p} n \mathrm{c} / \mathrm{m}^{2}$
Then,

Page (5)

$$
\begin{aligned}
P_{v} & =\nabla \cdot D=\left(\frac{1}{p}\right) \frac{d}{d p}\left(p D_{p}\right)+\frac{1}{p} \frac{\partial D_{\phi}}{\partial \phi} \\
& =\left[-\frac{1}{p}(50+150 \sin \phi)+\frac{1}{p} 150 \sin \phi\right] \\
& \epsilon_{0}=-\frac{50}{p} \epsilon_{0} c
\end{aligned}
$$

At P, this is $P_{r} p=-443 \mathrm{PC} / \mathrm{m}^{3}$
(b) How much Charge lies with in the Cylinder? we will integrate p_{v} over the volume to obtain:

$$
\begin{aligned}
& Q=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2}-\frac{5_{0+0}}{p} p d p d \phi d z= \\
&-5 \cdot 56 n c
\end{aligned}
$$

Page (6)

Q3: (a)
Sol:- we write

$$
\begin{aligned}
& e m f=\oint E \cdot d L=-\frac{d \phi}{d t}=-\frac{d}{d t} \iint_{\text {loop area }} \\
& B \cdot a_{z} d a=\frac{d}{d t}(0.3)(4)(6) \cos 5000 t
\end{aligned}
$$

where the loop normal is chosen as positive a_{2}, so that the path integral for E is taken around the positive ap direction. Taking the derivative, we find emf $=-7.2(5000)$ sin foot so then

$$
\begin{aligned}
I=\frac{e m f}{R} & =\frac{-36000 \sin 5000 t}{400 \times 10^{-3}} \\
I= & -90 \sin 5000 t \mathrm{~mA}
\end{aligned}
$$

