Name	Hooria Khan Orakzai
ID	14263
Subject	Probability & Statistics
Department	BS(SOFTWARE-ENGINEERING
Submitted to	SIR DAUD

Summer-20 Mid Term Assignment

Subject: Probability and Statistics

Note: Please attempt all Questions in sequence. All questions carry equal marks. (30)

Q1: Construct a grouped frequency distribution table and cumulative frequency curve (Ogive) for the observations below.

423, 369, 387, 411, 393, 394, 371, 377, 389, 409, 392, 408, 431, 401, 363, 391, 405, 382, 400, 381, 399, 415, 428, 422, 396, 372, 410, 419, 386, 390

Grouped frequency distribution table:

Class Interval	Frequency	Class-Boundries	C.f <	C.f >
360-374	4	359.5-374.5	4	30
375-389	6	374.5-389.5	10	26
390-404	9	389.5-404.5	19	20
405-419	7	404.5-419.5	26	11
420-434	4	419.5-434.5	30	4

C.B = Δ = LCL of 2nd clan-UCL of 1st clan

= 375-374

= 1

 $C.B = \Delta/2 => \frac{1}{2}$

= 0.5

Ogive Diagram:

Classes	frequency	Class-Boundries	Mid-Point x	F.m	Log x	f.log(x)
360-374	4	359.5-374.5	367	1468	2.56	10.24
375-389	6	374.5-389.5	382	2292	2.58	15.48
390-404	9	389.5-404.5	397	3573	2.59	23.31
405-419	7	404.5-419.5	412	2884	2.61	18.27
420-434	4	419.5-434.5	427	1708	2.63	10.52
Total	30					

Q2. FOI the observations given in Q1 calculate inean and debinetic mean.
--

Mean= Σ (f.mid) ∑f = 11925 30 Mean=397.5 Antilog ($\sum flog(x)$) Σf

Geometric Mean:

= Antilog (77.82)

= Antilog (2.594)

G.M = 392.6 Answer

Q3: Define the following terms

a) Population and Sample

Population:

- ✤ A population or a statistical population is a collection or set of all possible observations whether finite or infinite, relevant to some characteristics of interest.
- A statistical population may be real such as the heights of all the college students or hypothetical such as all the possible outcomes from the toss of a coin.
- The number of observations in a finite population is called the size of the population denoted by the letter "N".

Sample:

A sample is a part or a subset of a population. The number of observations included in a sample is called the size of the sample and is denoted by the letter "n".

The information derived from a sample data is used to draw conclusions about the population

b) The Range

Range:

The range, the difference between the largest value and the smallest value, is the simplest measure of variability in the data. The range is

determined by only the two extreme data values. The variance (s^2) and the standard deviation (s). For example In {4, 6, 9, 3, 7} the lowest value is 3, and the highest is 9, so the range is 9 - 3 = 6. Range can also mean all the output values of a function.

c) The Weighted Arithmetic Mean

Weighted Arithmetic Mean

The weighted arithmetic mean, denoted by \overline{Xw} of a set on n values

 X_1, X_2, \dots, X_n with corresponding weights W_1, W_2, \dots, W_n is defined as

 $\overline{X_{w}} = x_{1} w_{1} + x_{2} w_{2} + \dots + x_{n} w_{n}$ $w_{1} w_{2} + \dots + w_{n}$ $\underline{\sum x_{i} w_{i}} \qquad (i = 1, 2, 3, \dots, n)$ $\overline{\sum w_{i}}$

Good Luck