Department of Electrical Engineering
 Sessional Assignment
 Date: 01/06/2020

Course Details

Course Title: Instructor:

Digital Signal Processing \qquad Module:
6th
\qquad
Engr Pir Meher Ali Shah
Total Marks: 20

Student Details

Name:
irshad khan \qquad Student ID:
12403

| (b) | Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in
 its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in
 $\frac{1}{\sqrt{2}}$ at $\omega=4 \pi / 9$. | |
| :--- | :--- | :--- | :--- |
| (c) | A finite duration sequence of Length L is given as
 $x(n)= \begin{cases}1, & 0 \leq n \leq L-1 \\ 0, & \text { otherwise }\end{cases}$
 (d)Compute the DFT of the four-point sequence
 $x(n)=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$ | Marks |

Assignment DSP.
Irshad Khan 12403^{\cdots} page 1 21 Determine to the input response
(a) $y(x), x \geq 0$ of the system described by the second order difference equation.
sols.

$$
y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1)
$$

To the input $x(n)=4^{n} u(n)$.
Sol. First we detomine the solution to the homogenous equation.

$$
\begin{aligned}
& y_{h}(n) \cdot \lambda^{n} \\
& A^{n}-3 A^{n-1}-4 \lambda^{n-2}=0 \\
& A^{n-2}\left(\lambda^{2}-3 \lambda-4\right)=0 \\
& A=-1,4 \\
& y_{A}(n)=c_{1} d_{1}^{n}+c_{2} d_{2}^{n} \\
& =c_{1}(-1)^{n}+c_{2}(4)^{n}
\end{aligned}
$$

Initial conditions $y(-1)$ and

$$
y(-2) .
$$

so,

$$
\begin{aligned}
& y(0)=3 y(-1)+4 y(-2) \\
& y(1)=3 y(0)+4 y(-1) \\
& =3[3 y(-1)+4 y(-2)]+4 y(-1) \\
& =13 y(-1)+12 y(-2)
\end{aligned}
$$

\ddagger

$$
y_{h}(x)=c_{1}(-1)^{2}+c_{2}(4)^{3}
$$

so.

$$
y_{p}(n)=k(4)^{n} u(n)
$$

Irshad Khan. 19403 page 2.

$$
\begin{aligned}
& K n(4)^{n} u(n)-3 K(n-1)(4)^{n-1} u(n-1) \\
& -4 k(n-2)(4)^{n-2} u(n-2)=(4)^{n} u(n) \\
& +2(4)^{n-1} u(n-1)
\end{aligned}
$$

To determine k, we evaluate this equation for any $n \geqslant g$.
we select $n=2$
we obtain $k=6 / 5$. Therefore.

$$
\begin{gathered}
y p(n)=6 / 5 n(4)^{n} u(n) \\
y(n)=c_{1}(-1)^{n}+c_{2}(4)^{3}+6 / 5-n(4)^{n} \\
n \geqslant 0
\end{gathered}
$$

C_{1} and C_{2} ave constants. we obtain

$$
\begin{aligned}
& y(0)=3 y(-1)+4 y(-2)+1 \\
& y(1)=3 y(0)+4 y(-1)+6 \\
& =13 y(-1)+12 y(-2)+9
\end{aligned}
$$

For $n=0$ and $n=1$ yields.

$$
\begin{aligned}
& y(0)=c 1+c 2 \\
& y(1)=-(1+4 c 2+24 / 5 \\
& y(-1)=y(-2)=0 \\
& (1+c 2=1 \\
& -1+4 c 2+24 / 5=9
\end{aligned}
$$

Irshad chem $12408 \quad$ page 3
Hence.

$$
c_{1}=-1 / 25 \text { and } c_{2}=26 / 25 \text { for }
$$ function $x(n)=(4)^{n} u(n)$ in the form of

$$
f_{1 / 2 s}(n)=-1 / 85(-1)^{n}+\frac{26}{25}(4)^{n}+\frac{6}{5} n(4)^{n}
$$

$$
n \geq 0
$$

The total response if the system which includes the vespunse to arbitrary initial conditim.

21
(b) $\quad y(n)=0.6 y(n-1)-0.8 y(n-2)+x(n)$.
som. The system function is.

$$
H(z)=\frac{1}{1-0.6 z^{-1}+0.8 z^{-2}}
$$

the system has two complex -conjugate.

$$
p_{1}=0.6 e^{j \pi \beta} \quad p_{2}=0.6 e^{-j \pi / \beta}
$$

The

$$
x(z)=\frac{1}{1-z^{-1}}
$$

Therefore

$$
\begin{array}{r}
y z_{s}(z)=\frac{1}{\left(1-0.6 e^{j \beta} z^{-1}\right)\left(1-0.6 e^{-j \pi \beta} z^{-1}\right)} \\
\left(1-z^{-1}\right)
\end{array}
$$

$$
\begin{array}{r}
=\frac{0.342-j 0.046}{1-0.6 e j 1 \beta z^{-1}}+\frac{0.34 z+j 0.046}{1-0.6 e^{-j 18 z^{-1}}+} \\
\frac{1.066}{1-z^{-1}}
\end{array}
$$

$$
y_{z s}(n)=\left[1.066+1.08(0.6)^{n} \cos \left(\frac{\pi_{3}}{n}-3.3\right)\right]
$$

$$
u(n)
$$

conditions. $y(-1)$ and $y(-2)$.

$$
\begin{aligned}
& y(0)= 0.6 y(-1)-0.8 y(-2) \\
& y(1)= 0.6 y(0)-0.8 y(-1) \\
& 0.6(0.6 y(-1)+0.8 y(-2))+0.8 y(-1) \\
& 0.12 y(-1)+0.8 y(-2)
\end{aligned}
$$

Irsked whens 12403 page 5
Q2 Determine the casual signal $x(x)$ hawing
(a) the z-Tran sfax.

$$
x(z)=\frac{1}{\left(1-g z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

Take inverse z Irenstorm using pattich
fraction method.
Sols $\quad x(z)=\sum_{n=-\infty}^{\infty} \cos z^{-n}$

$$
x(z)=\frac{1}{4} \frac{1}{\left(1-y z^{-1}\right.}+\frac{3}{4} \frac{1}{1-g z^{-1}}+\frac{1}{2} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
$$

detoticas.
By using the formula.

$$
\begin{aligned}
& z^{-1}\left\{\frac{1}{1-p_{x} z^{-1}}\right\}=\left\{\begin{array}{l}
(p k)^{n} u(n) \\
-\left(p_{k}\right)^{n} u(-n-1)
\end{array}\right. \\
& R_{0}(:|z|>|p| c \mid \\
& R_{0} c:|z|<|p| c \mid
\end{aligned} \begin{aligned}
& Z^{-1}\left\{\frac{p z^{-1}}{\left(1-p z^{-1}\right)^{2}}\right\}=n p^{n} u(n) .
\end{aligned}
$$

The ROC is $|z|>|p|$.
By applying the inverse Transform
relations.

$$
\begin{aligned}
& x(n)=\frac{1}{4}(-1)^{n} u(n)+\frac{3}{4} u(n)+\frac{1}{2} n u(n)=\left[\frac{1}{4}\right. \\
& \left.(-1)^{n}+\frac{3}{4}+\frac{n}{2}\right] u(n) .
\end{aligned}
$$

Issue ven :11 12403 page, 6"
22 Determine the pattial-fraction expansion
(b) of the proper function.

$$
x(z)=\frac{1}{1-01.5 z^{-1}+0.5 z^{-2}}
$$

(d) First we eliminate the negative powers by multiplying both numerator and denominator by z^{2}. Thus.

$$
x(z)=\frac{z^{2}}{z^{2}-1.5 z+0.5}
$$

The poles of $X(Z)$ are $p=1$ and $p_{2}=0.5$.

$$
\frac{x(z)}{z}=\frac{z}{(z-1)(z-0.5)}=\frac{A_{1}}{z-1}+\frac{A_{2}}{z-0.5}
$$

A_{1} and A_{2} is to multiply the equation by denominator term $(z-1)(z-0.5)$. Thus we obtain

$$
z=(z-0.5) A_{1}+(z-1) A_{2}
$$

Now if we set.
$z=p_{1}=1$. We eliminate the term involving A_{2}. Hence

$$
\begin{aligned}
& 1=(1-0.5) A_{1} \\
& A_{1}=2 \\
& z=p 2=0.5 \\
& 0.5=(0.5-1) A_{2}
\end{aligned}
$$

Irshad khan $\Rightarrow 12403$ page " 7 " and pence $A_{2}=-1$.

Therefore the result of the partial fraction excponsion is.

$$
\frac{x(z)}{z}=\frac{2}{z-1}-\frac{1}{z-0.5}
$$

we can determine the coefficients Al, A_{2} \ldots.... A.

$$
k=1,2 \ldots, \ldots .
$$

In general form

$$
\begin{gathered}
\frac{(z-p k) \times(z)}{z}=\frac{\left(z-p_{k}\right) A_{1}}{z-p_{1}}+\cdots+A_{k} \\
+\cdots+\frac{\left(z-p_{k}\right) A_{N}}{z-p_{N}} \\
z=p_{k} \\
\left.A K=\frac{\left(z-p_{k}\right) \times(z)}{z} \right\rvert\, z=p_{k} \\
K=1,2, \ldots, 1
\end{gathered}
$$

Irshad khan 12403 page
23 A two pole lowpars fitter has the (a) system function

$$
H(z)=\frac{b 0}{\left(-p z^{-1}\right)^{2}}
$$

Determine the values of bo p such that the frequency response $H(W)$ satisfies, the condition $H(0)=1$ and $\left\lvert\, H\left(\frac{\pi}{4}\right) / 2=\frac{1}{2}\right.$

Solution: At $\omega=0$ we have.

$$
H(0)=\frac{b_{0}}{(1-\rho)^{2}}=1
$$

Hence

Toshud Khan

At $\omega=\pi / 4$

$$
\begin{aligned}
H C \quad \pi / 4)= & \frac{(1-p)^{2}}{\left(1-p e^{-j \pi / 4}\right)^{2}} \\
& =\frac{(1-p)^{2}}{(1-\rho \cos (\pi / 4)+j \rho \sin (\pi / 4))^{2}} \\
= & \frac{(1-p)^{2}}{(1-p 1 \sqrt{2}+j p) \sqrt{2})^{2}}
\end{aligned}
$$

Honce.

$$
\frac{(1-p)^{4}}{\left[(1-p / \sqrt{2})^{2}+p^{2} / 2\right]^{2}=\frac{1}{2}}
$$

Irshad khan \# 12403 page "10" equivalently.

$$
\sqrt{2}(1-p)^{2}=1+p^{2}-\sqrt{2} p
$$

The value of $p=0.32$ satisfies this equation. Consequently the. system function for the desived filter is

$$
H(z)=\frac{0.46}{\left(1-0.32 z^{-1}\right)^{2}}
$$

The same principles can applied for the design if bamdpass filters. Basically, the band pass filter should contain one or move pails of complex - conjugate poles near the unit circle in the vicinity If the ficquenvy band that constitues the passband of the filter. The following examples serves to illustrate the basic ideas.

Erisad khan tl 12403 page 11^{\prime}
23 Design a two pole ϕ bandpuss
(b) at $\omega, \pi / 2$ at $\omega=0$ and $\omega=\pi$ and its magnitude vesponse. is $2 / \sqrt{2}$ at $\omega=4 \pi / 9$.

Soln:- clearly the fitter must have poles at

$$
p \cdot 2=v e^{\pi / \pi / 2}
$$

and zeros at $z=1$ and $z=-1$ consequently the system function is.

$$
\begin{aligned}
H(z) & =G \frac{(z-1)(z+1)}{(z-j \gamma)(z+j \gamma)} \\
& =G \frac{z^{2}-1}{z^{2}+\gamma^{2}}
\end{aligned}
$$

Frequency response $H(\omega)$ of the filter at $\omega=\pi / 2$. Thus we have.

$$
\begin{aligned}
& H\left(\frac{\pi}{2}\right)=C \frac{2}{1-\gamma^{2}}=1 \\
& C_{7}=\frac{1-\gamma^{2}}{2}
\end{aligned}
$$

The value of γ is determined by evaluating $H(\omega)$ at $\omega=4 \pi / 9$. Thus we have

Irshad khan tl 19403 page' Iq'

$$
\begin{array}{r}
\left.1 H\left(\frac{4 \pi}{9}\right)\right|^{2}=\frac{\left(1-r^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{1+r^{4}+2 r^{2} \cos (8 \pi / 9)} \\
=1 / 2
\end{array}
$$

or equivalently.

$$
1.94\left(1-\gamma^{2}\right)^{2}=1-1.88 \gamma^{2}+\gamma^{4}
$$

The value of $\gamma^{2}=0.7$ satifies the equation.

For the desired Filter.

$$
H(z)=0.15 \frac{1-z^{-2}}{1+0.7 z^{-2}}
$$

So,

$$
H(z)=0.15\left[\left(1-z^{-2}\right) /\left(1+0.7 z^{-2}\right)\right]
$$

Irshad than tl l 12403 page It should be emphasized that the main purpose of foregoing methodology \& for designing simple digital filters by pole. zero placement is to provide insight into the effect the poles and sevos have on the frequency vespanse characteristic. y systems. The methodology is not intended as a good method for designing digital filters with well-specified passband and stopband characteristics. systematic. methods for the design of sophisticated digited filters for practical application ate discussed.

Irshad than \#1 12403 page $14{ }^{\circ}$
Q4 A finite duvection sequence 7 length
L is given us.

$$
x(n)=\left\{\begin{array}{lc}
1 & 0<n \leq L-1 \\
0 & \text { otherwise : }
\end{array}\right.
$$

Determine the appoint DFT of this sequence for $N \geqslant L$.
Solution: The fourier Transform of this sequence is

$$
\begin{aligned}
x(\omega)= & \sum_{n=0}^{L-1} x(n) e^{-j \omega n} \\
= & \sum_{n=0}^{L-1} e^{-j \omega n}=\frac{1-e^{-j \omega L}}{1-e^{-j \omega}}= \\
& \frac{\sin (\omega L / g)}{\sin (\omega / 2)} e^{-j \omega(L-1) / 2}
\end{aligned}
$$

The magnitude and phase of $x(\omega)$ are illustrated for $L=10$. The N/ point DFT of $x(n)$ is simply $x(\omega)$ evaluated at the set of N equally spared frequencies

$$
\begin{aligned}
& \omega_{K}=2 \pi K / N, K=0,1 \cdots N-1 \cdot \text { Hence. } \\
& X(K)=\frac{1-e^{j 2 \pi / K L N}}{1-e^{-j \text { gTK/N }}} \quad K=0.1 \cdots N-1
\end{aligned}
$$

Irshad than $\Rightarrow 12403$ page,

$$
\frac{\sin (\pi k L / N)}{\sin (\pi k / N)} e^{-i \pi k(L-1) / N}
$$

If N is selected such that $N=L$ then the DIT becomes.

$$
x(K)=\left\{\begin{array}{cc}
L & K=0 \\
0 & K=1,2 \ldots, L-1
\end{array}\right.
$$

Thus there is only one non zero value in the DFT.
since $x(\omega)=0$ at the frequencies $\omega_{K}=g \pi K / L, K \neq 0$. The reader should verify that $x(n)$ Lan be velovered from $x(K)$ by performing an L-point IDFT. In magnitude and phase for $L=10, N=50$ and $N=100$ as one will conclude by comparing these speet in with the continuous spectrum $x(\omega)$.
page 16 Irsheed changteh 1240 24 compute the DFT of the four 'd' point sequence.

$$
x(n)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

solo. The first step is to determine the matrix W4. By exploiting the periodicity property. of ω_{y} and the symmetry property.

$$
\omega_{N}^{K+N / 2}=-\omega_{N}^{K}
$$

The matrix ω_{4} may expressed as.

$$
\begin{aligned}
& \omega_{4}=\left[\begin{array}{cccc}
\omega_{4}^{0} & \omega_{4}^{0} & \omega_{4}^{0} & \omega_{4}^{0} \\
\omega_{4}^{0} & \omega_{4}^{\prime} & \omega_{4}^{2} & \omega_{4}^{3} \\
\omega_{4}^{0} & \omega_{4}^{2} & \omega_{4}^{4} & \omega_{4}^{6} \\
\omega_{4}^{0} & \omega_{4}^{3} & \omega_{4}^{6} & \omega_{4}^{9}
\end{array}\right]= \\
& {\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & \omega_{4}^{1} & \omega_{4}^{2} & \omega_{4}^{3} \\
1 & \omega_{4}^{2} & \omega_{4}^{0} & \omega_{4}^{2} \\
1 & \omega_{4}^{3} & \omega_{4}^{g} & \omega_{4}^{1}
\end{array}\right]}
\end{aligned}
$$

page .176" Ivshad than "12403:

$$
=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]
$$

Then

$$
x_{4}=\omega_{4} \times 4=\left[\begin{array}{c}
6 \\
-g+2 j \\
-2 \\
-g-2 j
\end{array}\right]
$$

The IDFT of x_{4} may be determined: by conjugating the elements in wi to obtain wt and then applying the formula.
The DFT and IDFT ave computational fools that play a very important role in many digital signal processing applications. such as ferenency analysis (spectrum analysis) of signals, power spectrum estimation and linear filtering. The importance of the DFT and IDFT in such practical applications is due to a large extent on the existence of computainally efficient algorithms, known collectively as fast.

