

NAME ADNAN

ID 13507

FINAL TERM ASSIGNMENT.

Q1.

ANS.

 GENETIC ALGORITHM USING PYTHON:

 First of all we define genetic Algorithm is a heuristic search method and It is used

for finding optimized solutions to search problems based on the theory of natural

selection and evolutionary biology.

 Now we taking example of Genetic Algorithm…

Crossover Operator: This represents mating between individuals. Two individuals

are selected using selection operator and crossover sites are chosen randomly.

Then the genes at these crossover sites are exchanged thus creating a

completely new individual (offspring). For example –

PARENT1…

A B C D E F G H

PARENT 2…

F G H A D B E A

Offspring…

 F G H B C D E A

Mutation Operator: The key idea is to insert random genes in offspring to maintain the

diversity in population to avoid the premature convergence. For example –

Before Mutation…

F G H B C D E A

After Mutation…

F G M B C D E N

Example problem and solution using Genetic Algorithms in python:

Python3 program to create target string, starting from

random string using Genetic Algorithm

import random

Number of individuals in each generation

POPULATION_SIZE = 100

Valid genes

GENES = '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP

QRSTUVWXYZ 1234567890, .-;:_!"#%&/()=?@${[]}'''

Target string to be generated

TARGET = "I love GeeksforGeeks"

class Individual(object):

'''

Class representing individual in population

'''

def __init__(self, chromosome):

self.chromosome = chromosome

self.fitness = self.cal_fitness()

@classmethod

def mutated_genes(self):

'''

create random genes for mutation

'''

global GENES

gene = random.choice(GENES)

return gene

@classmethod

def create_gnome(self):

'''

create chromosome or string of genes

'''

global TARGET

gnome_len = len(TARGET)

return [self.mutated_genes() for _ in range(gnome_len)]

def mate(self, par2): '''

Perform mating and produce new offspring ''

chromosome for offspring

child_chromosome = []

for gp1, gp2 in zip(self.chromosome, par2.chromosome):

random probability

prob = random.random()

if prob is less than 0.45, insert gene

from parent 1

if prob < 0.45:

child_chromosome.append(gp1)

if prob is between 0.45 and 0.90, insert

gene from parent 2

elif prob < 0.90:

child_chromosome.append(gp2)

otherwise insert random gene(mutate),

for maintaining diversity

else:

child_chromosome.append(self.mutated_genes())

create new Individual(offspring) using

generated chromosome for offspring

return Individual(child_chromosome)

def cal_fitness(self):

Calculate fittness score, it is the number of

characters in string which differ from target

string.

'''

global TARGET

fitness = 0

for gs, gt in zip(self.chromosome, TARGET):

if gs != gt: fitness+= 1

return fitness

Driver code

def main():

global POPULATION_SIZE

#current generation

generation = 1

found = False

population = []

create initial population

for _ in range(POPULATION_SIZE):

gnome = Individual.create_gnome()

population.append(Individual(gnome))

while not found:

sort the population in increasing order of fitness score

population = sorted(population, key = lambda x:x.fitness”

if the individual having lowest fitness score ie.

0 then we know that we have reached to the target

and break the loop

if population[0].fitness <= 0:

found = True

Otherwise generate new offsprings for new generation

new_generation = []

Perform Elitism, that mean 10% of fittest population

goes to the next generation

s = int((10*POPULATION_SIZE)/100)

new_generation.extend(population[:s])

From 50% of fittest population, Individuals

will mate to produce offspring

s = int((90*POPULATION_SIZE)/100)

for _ in range(s):

parent1 = random.choice(population[:50])

parent2 = random.choice(population[:50])

child = parent1.mate(parent2)

new_generation.append(child)

population = new_generation

print("Generation: {}\tString: {}\tFitness: {}".\

format(generation,

"".join(population[0].chromosome),

population[0].fitness))

generation += 1

print("Generation: {}\tString: {}\tFitness: {}".\

format(generation,

"".join(population[0].chromosome),

population[0].fitness))

if __name__ == '__main__':

main ()

so the output will be

------- -------- --------- --------- ----------- ------------ ----------- ----------- ----------- ------------ --------------

Q3.

ANS.

Here we have some data of KNN Algorithm example:

Name Acid

Durability

Strength class

Type1 7 7 Bad

Type2 7 4 Bad

Type3 3 4 Good

Type4 1 4 Good

Now here we include Test where Data Durability =3, strength=7 without any survey how
we say its include in which class” Bad or Good”.

1. Determine parameter where k= number of nearest neighbors.

Suppose where k=3

So calculate the distance between the query- instance and all the training data.

Name Acid

Durability

Strength Square Distance
to Query instance
(3,7)

Type1 7 7 (7-3)2+(7-7)2=16

Type2 7 4 (7-3)2+(4-7)2=25

Type3 3 4 (3-3)2+(4-7)2=9

Type4 1 4 (1-3)2+(4-7)2=13

Now sort the distance and find the nearest neighbors on the based on the k-th minimum

distance

Acid strength Durability
(seconds)

Strength Square distance Rank
to query minimum
(kg/square instance
distance meter)(3,7)

It is include nearest
neighbors

7 7 (7-3)2+(7-7)2=16 3 Yes

7 4 (7-3)2+)(4-7)2=25 4 No

3 4 (3-3)2+(4-7)2= 9 1 Yes

1 4 (1-3)2+(4-7)2 = 13 2 Yes

Gather than category y of the nearest neighbors in the second row last column that the

category of nearest (y) is not include because the rank of tis data is more than (k=3).
Name Acid

Durability

Strength Square distance

rank to query

minimum in 3

(kg/square

instance

distance meter

)(3,7)

Is it included

Nearest

neighbors ?

Y=category of

nearest

neighbors

Type1 7 7 (7-3)2+(7-

7)2=16 3

Yes Bad

Type2 7 4 (7-3)2+)(4-
7)2=25 4

No -

Type3 3 4 (3-3)2+(4-7)2= 9
1

Yes Good

Type4 1 4 (1-3)2+(4-7)2 =
13 2

yes Good

So we have 2 good and 1 bad, since 2>1 then we conclude that a new Test Data with Acid durability =3 and strength

=7 is include in class Good.

------ -------- --------- -------- -------- --------- ---------- ------------ ----------- -------------- ----------- --------------

 Q4.

ANS.

hierarchical Clustering:

 Dimensional data set { 8,12,22,30,36)

Lets first we visualize the above data set data

1. The first two points (8,12) are close to each other and should be in the same cluster.

2. Also the last two points (30,36) are close to each other and should be in the same

cluster.

3. Cluster of the center point (22) is not easy to conclude.

Now solved the above example in using both type of agglomerative hierarchical clustering

method.

1. Single Linkage:

 In single link hierarchical clustering we merge in each step

the two clusters whose two closest members have the

smallest distance.

Using single linkage two clusters are formed :

Cluster 1 : (8,12)

Cluster 2 : (20,30,36)

2. Complete Linkage: In complete link hierarchical

clustering, we merge in the members of the clusters in each

step, which provide the smallest maximum pairwise distance.

 ----- THE END-----

Using complete linkage two clusters are formed :

Cluster 1 : (8,12,22)

Cluster 2 : (30,36)

