

Mid Exam Summer

Course Name: DLD

Submitted By:
Abdul Razzaq (12938)
BS (SE-8) Section: A

Submitted To:
Sir Muhammad Amin

Dated: 22 ${ }^{\text {th }}$ August 2020

Department of Computer Science, IQRA National University, Peshawar Pakistan

Digital Logic \& Design/Digital Systems

Programs: BS (CS)/BS (SE)/BS (TELC)
Course Codes: CSC-201/SEC-201/TSC-201
EDP Codes: 102007016
Instructor: Muhammad Amin
Examination: Mid Term
Semester: Summer 2020
Total Marks: 30
Date: August 22, 2020
Timing: 2:00 pm - 6:00 pm

Q.1	Q.2	Q.3	Q.4	Q.5	Q.6	Total Marks
$0.5 \times 8=4$	$1 \times 4=4$	$1 \times 2=2$	$3 \times 2=6$	$3 \times 3=9$	$3+2=5$	30

Q. 1 Convert each of the following:
(a) $45.25_{10}=(?)_{2}$
(b) $01111111.1010_{2}=$ (?) 10 (c) $3 A_{6} 6 \mathrm{~F}_{16}=(?)_{2}$
(d) $10101010_{2}= \pm(?)_{10}$
(e) $-1_{10}=(?)_{2}$
(f) $156_{10}=(?)_{\text {всD }}$
(g) $1001010_{2}=(?)_{\text {Gray }}$
(h) $111000=(? 101001)_{\text {Even parity }} \mathbf{Q} .2$

Q1)
a) $45 \cdot 25_{10}=(?)_{2}$

2	45	
2	$22-1$	
2	$11-0$	
2	$5-1$	
2	$2-1$	
	$1-0$	

Happened $\quad 45_{10}=101101_{2}$
Now .25

$$
\begin{aligned}
& 0.25_{10}=0.01 \\
= & 101101_{2}+0.012 \\
= & 101101.01_{2}
\end{aligned}
$$

(b) $0111111.1010_{2}=(?)_{10}$

$$
\begin{aligned}
& 011111.1010_{2}=0.2^{7}+1 \cdot 2^{6}+1.2^{5}+1 \cdot 2^{4} \\
&+1.2^{3}+1.2^{2}+1.2^{1}+1.2^{0}+1.2^{-1}+0.2^{-2}+1.2^{-3} \\
&+0.2^{-4} \\
&=0+64+32+16+8+4+2+1+0.5+0+0.125+0 \\
&= 127.625_{10}
\end{aligned}
$$

(c) $3 A b F_{16}=(\text { ? })_{2}$

$$
\left(3 A 6 F_{16}\right)=(0011101001101111)_{2}
$$

(d) $10101010_{2}= \pm(?)_{10}$

$$
\begin{aligned}
10104010= & 1 \times 2^{7}+0 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3} \\
& +0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
= & 1 \times 128+0 \times 64+1 \times 32+0 \times 16 \\
& \times 8+0 \times 4+1 \times 2+0 \times 1 \\
10101010= & (170)_{10}
\end{aligned}
$$

(d) $-1_{10}=(?)_{2}$

$$
-1_{10}=(?)_{2}
$$

$(1)=(-1)_{2}$
(f) $15 b_{10}=(?)_{B C D}$

1	5	b
$/$	1	1
0001	0101	0110

$$
(156)_{10}=(000101010110)_{B C D}
$$

(3)

$$
\begin{aligned}
& 1001010_{2}=(?)_{\text {Gog }} \\
& 1001010=? \\
& g_{6}=b_{6}=1 \\
& g_{5}=b_{6} \oplus b_{5}=1 \oplus 0=1 \\
& g_{4}=b_{5} \oplus b_{4}=0 \oplus 0=0 \\
& g_{3}=b_{4} \oplus b_{3}=0 \oplus 1=1 \\
& g_{2}=b_{3} \oplus b_{2}=1 \oplus 0=1 \\
& s_{1}=b_{2} \oplus b_{1}=0 \oplus 1=1 \\
& g_{3}=b_{1} \oplus b_{0}=1 \oplus 0=1
\end{aligned}
$$

$1001010_{2}=(1101111)_{\text {quay ade }}$.
(h) $111000=(? 101001)_{\text {Eren ponity }}$

101001 is odd since its not divisble by 2 , As remainder is equal to 1, when divid by (2).
Q. 2 Calculate each of the following:
(a) $9 \mathrm{~B}_{16}+8 \mathrm{~A}_{16}$
(b) $\mathrm{F} 7_{16}-\mathrm{D} 6_{16}$
(c) $11002+1011_{2}$ [Use modulo-2]
(d) $01111111_{2}-00000111_{2}$ [use 2's complement]
$\left.Q_{2}\right)$
(a) $9 B_{16}+8_{\text {Al6 }}$

Sal:

$$
\begin{array}{r}
11 \\
\text { 1 } \\
9 \\
+8 \\
\hline 8
\end{array}
$$

(1)

$$
\Rightarrow 2110
$$

$$
=16 \times 1+5 \Rightarrow 15_{16}
$$

$$
\text { Sum }=5, \text { carry }=1
$$

$$
\text { (2) } \Rightarrow 1+9_{16}+8_{16}
$$

$$
\Rightarrow 1+9_{10}+8_{10}
$$

$$
=1810 \Rightarrow 16 \times 1+2
$$

$$
=12_{16}
$$

$$
\text { a sum }=2, \operatorname{cost} y=1
$$

(b) $F 7_{10}-D b_{16}$

Sal:

$$
\begin{array}{ll}
F & 7 \\
-\begin{array}{ll}
D & 6
\end{array} & \therefore 7-6,7>6 \\
2 & 1
\end{array}
$$

(c) $1100_{2}+10 \%_{2}$

Sal:-

(1)

$$
\therefore O_{2}+1_{2} \Rightarrow O_{10}+1_{10}
$$

$$
\Rightarrow 1_{10}=I_{2}
$$

$$
S_{u m}=1
$$

$$
\begin{aligned}
& \therefore \mathrm{O}_{2}+1_{2} \Rightarrow \mathrm{O}_{10}+110 \\
& =110 \Rightarrow 1_{2}
\end{aligned}
$$

$$
\begin{gathered}
\therefore \text { (3) } 1_{2}+O_{2} \Rightarrow I_{10}+O_{10} \\
\Rightarrow 1_{10} \Rightarrow b_{2} \\
\text { Sum }=1
\end{gathered}
$$

$$
=210 \Rightarrow 2 \times 1+0
$$

$$
=10_{2}, \text { sum }=0, \operatorname{cosor} y=1
$$

(d) $01111111_{2}-00000111_{2}$

Sal:- 1111111

$$
-0000111
$$

(1)
:.

$$
\Rightarrow \mathrm{O}_{2}
$$

(2) $1-1 \Rightarrow O_{2}$
$\therefore 1-1 \Rightarrow O_{2}$
(4)

$$
\begin{aligned}
& \text { (b) } 1>0 \Rightarrow 1-0 \\
& \Rightarrow 1_{2} \\
& \therefore 1_{1}>0 \Rightarrow 1-0 \\
& 1_{2}
\end{aligned}
$$

$$
\therefore 1>0 \Rightarrow 1 \rightarrow 0
$$

$$
\Rightarrow 1_{2}
$$

Q. 3 Determine the output waveforms for the $X O R$ and XNOR gates, given the input waveforms, A and B, in Figure 01.

Q. 4 (a) Draw the logic circuit for the following expression:

$$
X=\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A B \bar{C}+A B C
$$

(b) Using Boolean algebra, simplify the expression given in part (a).

Q $4(A)$

$$
\text { (A) } x=\bar{A} B C+\bar{A} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C
$$

Q4)(b)
Sal:-

1) Factor $B C$ out of the first \because last

$$
B C(\bar{A}+A)+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C
$$

2) Applying rule $6(\bar{A}+A=1)$ fo the term in paraenthesis,

$$
B C \cdot 1+A \bar{B}(\bar{C}+C)+\bar{A} \bar{B} \bar{C}
$$

3) Applying rule 4 (drop the 1) to the first term and rule b $(\bar{C}+c=1)$ to the term

$$
B C+\overline{A B} \cdot 1+\bar{A} \bar{B} \bar{C}
$$

4) Applying rule 4 (drop the 1) to the and term

$$
B C+A \bar{B}+\bar{A} \bar{B} \bar{C}
$$

5) Factor \bar{B} from the Second and third terms

$$
B C+\bar{B}(A+\bar{A} \bar{C})
$$

Q. 5 (a) Convert the following expressions to standard SOP form: $A=X+Y+Z$
(b) Convert the standard SOP expression obtained in part (a) to standard POS form.
(c) Develop a single truth table for the standard $S O P$ and standard $P O S$ expressions obtained in part (a) and part (b) respectively.

P5) part (a)

$$
A=\overline{\overline{x+Y}}+z
$$

Solution:

$$
\begin{aligned}
& A=\bar{x}+\bar{y}+z \\
& A=\overline{\bar{x}}+\overline{\bar{y}} \mp \bar{z} \\
& A=x \cdot y \cdot \bar{z}
\end{aligned}
$$

pot (b)

$$
A=x y \bar{z}
$$

There are total 8 combinations the sop contains 1 of these, So the pos must contains the other 7 which are $000,010,011,100,101,110,111$

$$
\begin{array}{r}
(x+y+z)(x+\bar{y}+z)(x+\bar{y}+z)(\bar{x}+y+z) \\
\quad(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})
\end{array}
$$

Q. 6 (a) Use a Karnaugh map to find the minimum $S O P$ form for the following

$$
\text { expression: } X=\bar{A} \bar{B} C+\overline{A B C}+\bar{A} B \bar{C}+A B \bar{C}+A B C+A B \bar{C}
$$

(b) Determine minimum POS form the Karnaugh map used in part (a).

Figure 01

Q: Part a)

part (b)

A	B	0	1
0	0	0	(1)
0	1	0	0
1	1	1	0
1	0	1	0

$$
X=(A+B+\bar{C})(\bar{A}+\bar{B}+C)(\bar{A}+B+C)
$$

*********Wish Yau All the Best ${ }^{* * * * * * * * *}$

