Name
Id

Adnan
13507

Q1.

- Solved
- (a) In Cumulative Frequency Curve that's show the times taking by the students long walk to school on the particular morning.
- Now first we draw a cumulative frequency curve chart.

Cumulative frequency chart are following:

- Estimating from the Frequency Distribution graph 114 students are taking long on school less than 18 minutes...
(b) Now we are taking from the frequency distribution calculate the frequency density for each interval.
- We know Frequency density =frequency+ interval width. Here class interval width is 5 .

Upper boundry	Cumulative Frequency	Time(min)	Frequency	Frequency density
5	25	$0-$	25	$25 / 5=5$
10	45	$5-$	$45-25=20$	$20 / 5=4$
15	81	$10-$	$81-45=36$	$36 / 5=7.2$
20	143	$15-$	$143-81=62$	$62 / 5=12.4$
25	280	$20-$	$280-143=137$	$137 / 5=27.4$
30	349	$25-$	$349-280=69$	$69 / 5=13.8$
35	374	$30-$	$374-349=25$	$25 / 5=5$
40	395	$35-$	$395-374=21$	$21 / 5=4.2$
45	400	$40-(45)$	$400-395=5$	$5 / 5=1$
			Total $=400$	

Q2.

Solved.

First we construct group distribution table for the following data ...
Now we convert the dada in order form ...
363,369,371,372,377,381,382,386,387,389,390,391,392,393,394,396,399,400, 401,405,408,409,410,411,415,419,422,423,428,431.

Were $n=30$
Now we find range Range= large-small
$R=431-363=68$
Suppose we take 8 classes of equal size .
The size would be 68/8=8.5=9
$\mathrm{h}=9 \quad$ Class interval $=8$

Table of group data

llass	$361-$	370	$379-$	$388-$	$397-$	$406-$	$415-$	$424-$
boundary	369	378	387	396	405	414	423	432
Frequency	2	3	4	7	4	5	3	2

Now we are find the Mean of the above group data...

Class boundary	Frequency	Midpoint	Frequency*Midpoint
$361-369$	2	365	$2^{* 365=730}$
$370-378$	3	374	$3^{*} 374=1122$
$379-387$	4	383	$4^{*} 383=1532$
$388-396$	7	392	$7^{*} 392=2749$
$397-405$	4	402	$4^{*} 402=1608$
$406-414$	5	412	$5^{*} 412=2060$
$415-423$	3	421	$3^{*} 421=1263$
$424-432$	2	429	$2^{*} 429=858$
	$\Sigma \mathrm{~F}=30$		$\Sigma \mathrm{FX}=11922$

- $\overline{\mathbf{x}}=\Sigma \mathrm{FX} / \Sigma \mathrm{F}=11922 / 30$
- Now we find the mode of the above group data ...
- We know that mode $=\mathrm{i}+\mathrm{fm}-\mathrm{f} 1 /(\mathrm{fm}-\mathrm{f} 1)+(\mathrm{fm}-\mathrm{f} 2)^{*} \mathrm{~h}$

Where I = lower class boundary
$\mathrm{Fm}=$ frequency of model class
F1 = frequency of associative class with preceding class
F2= frequency associative class with the model class
$\mathrm{h}=$ width of class interval.
In the above group data ...
I = 388
$\mathrm{fm}=7$
f1 $=7-4=3$
f2 = 7-4=3
$h=9$
mode?

Now write the mode formula
Mode $=I+f m-f 1 /(f m-f 1)+(f m-f 2) * h$
Now put values in mode formula
Mode $=388+7-3 /(7-3)+(7-3)^{*} 9$
$=388+4 / 4+4 * 9$
$=392 * 9 / 8$
= 3528/8
Mode $=441$ ANS .

Now we are find quantiles of the above data group table.

Continuous

Class boundary	Frequency	Cumulative Frequency
$361-3659$	2	30
$370-378$	3	28
$379-387$	4	25
$388-396$	7	21
$397-406$	4	14
$407-414$	5	10
$415-423$	3	5
$424-432$	2	2
	$\mathbf{n}=\mathbf{3 0}$	

We know lower Quantiles formula.

$$
\text { Q1 }=\mathrm{L}+(\mathrm{n} / 4-\mathrm{CFb}) / \mathrm{f} * \mathbf{i}
$$

$1^{\text {st }}$ step $n / 4=30 / 4=7.5$
the model class frequency $=7$.
L=388-0.5=387.5
$\mathrm{Cfb}=14$

$$
\text { I = } 9
$$

$\mathrm{F}=7$ put this all values in Quantiles formula...

$$
\begin{aligned}
& \text { Q1 = } 387.5(7.5-14) / 7 * 9 \\
& \text { Q1 }=387.5+(-6.5) / 7 * 9 \\
& =387.5-8.357 \\
& \text { Quantiles = 379. ANS ... }
\end{aligned}
$$

Q3.

Solved.

Relationship between standard deviation and the mean of two sets

- The standard deviation and the mean two sets is a measure of dispersion. Both are appropriate descriptive statistics for normally distributed data sets using ratio or interval scaling.
- the ratio relationship is the same as it is for the binomial distribution. Both mean and standard deviation are used in calculating some correlation coefficients, effect sizes, (Analysis of Variance).
\qquad * \qquad * \qquad * \qquad * \qquad *

Q4.

Solved.

We know that variance and standard deviation formula

$>\mathbf{S}^{\mathbf{2}}=\boldsymbol{\Sigma} \mathrm{FD} / \boldsymbol{\Sigma} \mathbf{F}-(\boldsymbol{\Sigma} \mathrm{FD} / \boldsymbol{\Sigma} \mathbf{F})^{2}$
where s^{2} is a symbol of variance
D is a deviation.
Now draw the variance group data table.

Class boundary	Frequency	Mid.point x	D=X-A	FD	FD^{2}
64-84	15	74	$\begin{aligned} & 74-124.5=- \\ & 50.5 \end{aligned}$	$\begin{aligned} & 15 *-50.5=- \\ & 757.5 \end{aligned}$	-38253.75
85-104	18	95.5	$\begin{aligned} & 95.5-124.5=- \\ & 29.5 \end{aligned}$	$\begin{aligned} & 18^{*}-29.5=- \\ & 531 \end{aligned}$	5075298
105-124	27	124.5	$\begin{aligned} & 124.5- \\ & 124.5=0 \end{aligned}$	0	0
125-144	10	134.5	$\begin{aligned} & 134.5- \\ & 124.5=10 \\ & \hline \end{aligned}$	10*10=100	100000
145-164	6	154.5	$\begin{aligned} & 154.5- \\ & 124.5=30 \end{aligned}$	$6 * 30=180$	5400
165-184	5	174.5	$\begin{aligned} & 174.5- \\ & 124.5=50 \\ & \hline \end{aligned}$	5*50=250	12500
185-204	13	194.5	$\begin{array}{\|l\|} \hline 194.5- \\ 124.5=70 \\ \hline \end{array}$	13*70=910	63700
	$\mathrm{n}=94$			EFD=151.5	$\begin{aligned} & \bar{\Sigma} \text { FD }^{2} \\ & =5218644.25 \end{aligned}$

We assume $A=124.5$
we know that $s^{2}=\Sigma F D / \Sigma F-(\Sigma F D / \Sigma F)^{2}$
put values in the variance formula.
$S^{2}=5218644.25 / 94-(151.5)^{2 / 94}$
$=490552559.2-(1.61170){ }^{2}$
= 490552559.2-2.5975
$s^{2}=490552556.602$
now we are taking square root of the following values for standard deviation.
$\sqrt{ } s^{2}=\sqrt{ } 490552556.602$
$\sqrt{ } \boldsymbol{s}^{2}=22148.4210$ ANS.

Q 5

Solved.

Comment.

comment of the given sentences are followings:
(a)
yes he can do that because the depth of the river is 5 ft average its cannot deep uniform.
It can be $\mathbf{2 f t}$ in one location of the river depth and 7 ft of the other location of the river.
it can be 4 - ft at one place and 12 or more feet at others.
Ofcourse the average of the river is $\mathbf{5 f t}$ so the $\mathbf{5 f t}$ persons can easily cross it .
(b)

Yes The students of the class are hopeless because the average marks of the students is $\mathbf{3 0} \%$. But that's not the uniform way to assume the marks because that's the average .some of other students obtained good marks in the class.

So ofcourse the average marks of the class is $\mathbf{3 0 \%}$ so the maximum students of the class hopeless to obtained 30% marks.
(c)

Yes the king fabulously paid to their household servants because he is a king and all the country resources and income are distribute and manage by him command . so the king will be fabulously paid $\mathbf{£ 2 0 , 0 0 0}$ per month is the monthly average amount.

THE END...

