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Q1. Analyze Insertion Sort for Best Case?                                                                  

Analysis of Insertion  

Insertion Sort is an algorithm used to sort a given list of items. It does so by iterating through the list and 
building the sorted output one item at a time. Upon each iteration, an item is taken from the list and 
inserted into the correct position by comparison with its neighbors. This process is repeated until we 
reach the last item and there are no more left to be sorted. 

Let’s begin by taking a look at some of it’s advantages: 

 It’s a simple algorithm to implement 

 Performance is very high when operating with small lists 

 Even more so when the list is already mostly sorted, as fewer iterations of the sorting 

logic need to take place 

However, the algorithm does hold some disadvantages: 

 Performance suffers when large lists are used, 

as this could involve carrying out a lot of 

comparisons and shifting of array items 

 The algorithm doesn’t perform as well as the 

merge sort and quick sort algorithms, both of 

which we’ll look at soon 

Pseudo code 

So now we know what the algorithm does, we should 

declare exactly what it does in the form of pseudo code 

to help aid understanding and communicate the 

process carried out to sort our list. For insertion sort 

this is fairly simple, so let’s take a quick look at one of 

the ways in which we could approach it: 

Pretty straightforward, eh? There’s not a huge amount 

going on here, but it’s important to understand the purpose of each line: 

1. We begin by declaring the for loop for the algorithm, we’re going to loop through the 

entire length of our input array. We start from the second item in our array as the first 

item has nothing to the left to compare it to. 

2. We set the current item which is to be sorted (key) equal to the current item at our 

iteration position. 

3. We declare the variable i which we use to reference the position before the current 

iteration, i.e. to the left of it. 



4. If necessary, then this step is where we start 

sorting the current item. We begin by checking 

that our i index from step 3 is at least the first 

item in the list (> position 0) and that the value 

in our A array at this index i is greater than our 

key value from step 2. 

5. Whilst the above step holds true, the item at 

A[i] (the item to the left of our current 

iteration) becomes the value set at the current 

iteration A[i + 1] — which is equal to A[j]. 

This is because this value is greater than the 

value currently at A[i + 1], so it should be put in 

its place instead. 

6. At this step in our whilst loop, we move another 

step to the left in our array by decrementing our i value. 

7. We reach the end of our whilst statement when the conditions are no longer satisfied. 

This is if both the i value reaches zero or the value at A[i] is not greater than the key 

value. 

8. We then finish this iteration by inserting our key value into it’s position in the array. 

Whenever the whilst loop exited at step 6, our i variable was set to the next index (to the 

left) in our input array. If the loop exited because the value here was less than our key 

value, then the key value is insert to the right of that at [i + 1], yet before the item that 

was inserted at step 5 before i was decremented. If the loop exited due to i reaching zero, 

then our key value is simply inserted at the beginning of our array. 

Example 

If you’ve got that, great! It’ll help to run through an example so we can really nail what’s going 

on. If you didn’t follow, try going through it again and return to this section after! 

So, let’s start by declaring an array which we want to sort:  

Now we’re ready to go, we begin at the very first line of the pseudo code. Our input array 

contains 4 elements, so we’re going to be looping: 

  

Pretty straight forward, eh? There’s not a huge amount going on here, but it’s important to 

understand the purpose of each line: 

1. We begin by declaring the for loop for the algorithm, we’re going to loop through the entire 
length of our input array. We start from the second item in our array as the first item has 
nothing to the left to compare it to. 

2. We set the current item which is to be sorted (key) equal to the current item at our iteration 
position. 

3. We declare the variable i which we use to reference the position before the current iteration, i.e 
to the left of it. 



4. If necessary, then this step is where we start sorting the current item. We begin by checking that 
our i index from step 3 is at least the first item in the list (> position 0) and that the value in our 
A array at this index i is greater than our key value from step 2. 

5. Whilst the above step holds true, the item at A[i] (the item to the left of our current iteration) 
becomes the value set at the current iteration A[i + 1] — which is equal to A[j]. This is because 
this value is greater than the value currently at A[i + 1], so it should be put in it’s place instead. 

6. At this step in our whilst loop, we move another step to the left in our array by decrementing 

our i value. 
7. We reach the end of our whilst statement when the conditions are no longer satisfied. This is if 

both the i value reaches zero or the value at A[i] is not greater than the key value. 
8. We then finish this iteration by inserting our key value into it’s position in the array. Whenever 

the whilst loop exited at step 6, our i variable was set to the next index (to the left) in our input 
array. If the loop exited because the value here was less than our key value, then the key value 
is insert to the right of that at [i + 1], yet before the item that was inserted at step 5 before i was 
decremented. If the loop exited due to i reaching zero, then our key value is simply inserted at 
the beginning of our array. 

Time Complexity 

Average Case 

Now we know how our Insertion Sort algorithm works , we need to understand how efficient the 

algorithm is and to do this, we have to calculate it’s running time. This process is done by taking 

a look at each step of the algorithm at calculating it’s ‘cost’ — which is how expensive the 

operation is in terms of time. 

 

  

Best Case 

But what about the best case for our algorithm? This is 

the situation that occurs when say the input array is 

already sorted. The steps in the algorithm will still be 

executed, but the while loop that does the sorting will 

not be entered - which reduces the complexity greatly. 

because of this, the algorithm is simplified which is 

reflected in the equation below: 



 

Worst Case 

And finally, the worst case for our algorithm occurs when the input array is in the complete 

opposite order from what we want it to be for being sorted. So in our case, our example array 

would be equal to A= 

[9, 5, 3, 1] - which is in 

decreasing order. The 

equation for this would 

look like so: 

This is because the 

entire algorithm, 

including the for loop, 

would need to be 

executed for every 

single iteration as each 

item in the array needs 

to be checked and 

sorted. We took three 

steps to simply this 

equation, with the final 

step being able to be expressed as: 

 

 

We can again remove the constants from this expression, which gives use a worst case time complexity 

of: 

 

 

 

 

 

 

 

 



Q2. Explain briefly each of the following term with a supporting 

Graph.  

1. Adjacent Edges 

What is Graph: 

G = (V,E) 

Graph is a collection of nodes or vertices (V) and edges(E) between them. We can traverse these 

nodes using the edges. These edges might be weighted or non-weighted. 

There can be two kinds of Graphs 

 Un-directed Graph – when you can traverse either direction between two nodes. 

 Directed Graph – when you can traverse only in the specified direction between two 

nodes. 

 Adjacency List is the Array[] of Linked List, where array size is same as number of 

Vertices in the graph. Every Vertex has a Linked List. Each Node in this Linked list 

represents the reference to the other vertices which share an edge with the current vertex. 

The weights can also be stored in the Linked List Node. 

  
 The code below might look complex since we are implementing everything from scratch 

like linked list, for better understanding. Read the articles below for easier 

implementations (Adjacency Matrix and Adjacency List) 

  

 

 

 

 

 

https://i2.wp.com/algorithms.tutorialhorizon.com/files/2015/02/Adjacency-List.png


ii. Adjacent Nodes 

There are two standard ways to represent a graph G = (V, E): as a collection of adjacency lists or 

as an adjacency matrix. The adjacency-list representation is usually preferred, because it 

provides a compact way to represent sparse graphs--those for which |E| is much less than |V|2. 

Most of the graph algorithms presented in this book assume that an input graph is represented in 

adjacency-list form. An adjacency-matrix representation may be preferred, however, when the 

graph is dense--|E| is close to |V|2 -- or when we need to be able to tell quickly if there is an edge 

connecting two given vertices. For example, two of the all-pairs shortest-paths algorithms 

presented in Chapter 26 assume that their input graphs are represented by adjacency matrices. 

The adjacency-list representation of a graph G = (V, E) consists of an array Adj of |V| lists, one 

for each vertex in V. For each u V, the adjacency list Adj[u] contains (pointers to) all the 

vertices v such that there is an edge (u,v) E. That is, Adj[u] consists of all the vertices adjacent 

to u in G. The vertices in each adjacency list are typically stored in an arbitrary order. Figure 

23.1(b) is an adjacency-list representation of the undirected graph in Figure 23.1(a). Similarly, 

Figure 23.2(b) is an adjacency-list representation of the directed graph in Figure 23.2(a). 

 

Figure .Two representations of an undirected graph. (a) An undirected graph G having five 

vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix 

representation of G. 

 



Figure  Two representations of a directed graph. (a) A directed graph G having six vertices and 

eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation 

of G. 

If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|, since an edge of 

the form (u,v) is represented by having v appear in Adj[u]. If G is an undirected graph, the sum of 

the lengths of all the adjacency lists is 2|E|, since if (u,v) is an undirected edge, then u appears in 

v's adjacency list and vice versa. Whether a graph is directed or not, the adjacency-list 

representation has the desirable property that the amount of memory it requires is O(max(V, E)) 

= O(V + E). 

Adjacency lists can readily be adapted to represent weighted graphs, that is, graphs for which 

each edge has an associated weight, typically given by a weight function w : E R. For example, 

let G = (V, E) be a weighted graph with weight function w. The weight w(u,v) of the edge (u,v) 

E is simply stored with vertex v in u's adjacency list. The adjacency-list representation is quite 

robust in that it can be modified to support many other graph variants. 

A potential disadvantage of the adjacency-list representation is that there is no quicker way to 

determine if a given edge (u,v) is present in the graph than to search for v in the adjacency list 

Adj[u]. This disadvantage can be remedied by an adjacency-matrix re presentation of the graph, 

at the cost of using asymptotically more memory. 

For the adjacency-matrix representation of a graph G = (V, E), we assume that the vertices are 

numbered 1, 2, . . . , |V| in some arbitrary manner. The adjacency-matrix representation of a 

graph G then consists of a |V| |V| matrix A = (aij) such that 

 

Figures 23.1(c) and 23.2(c) are the adjacency matrices of the undirected and directed graphs in 

Figures 23.1(a) and 23.2(a), respectively. The adjacency matrix of a graph requires (V2) 

memory, independent of the number of edges in the graph. 

Observe the symmetry along the main diagonal of the adjacency matrix in Figure 23.1(c). We 

define the the transpose of a matrix A = (aij) to be the matrix given by . 

Since in an undirected graph, (u,v) and (v,u) represent the same edge, the adjacency matrix A of 

an undirected graph is its own transpose: A = AT. In some applications, it pays to store only the 

entries on and above the diagonal of the adjacency matrix, thereby cutting the memory needed to 

store the graph almost in half. 

Like the adjacency-list representation of a graph, the adjacency-matrix representation can be 

used for weighted graphs. For example, if G = (V, E) is a weighted graph with edge-weight 

function w, the weight w(u, v) of the edge (u,v) E is simply stored as the entry in row u and 

column v of the adjacency matrix. If an edge does not exist, a NIL value can be stored as its 



corresponding matrix entry, though for many problems it is convenient to use a value such as 0 

or . 

Although the adjacency-list representation is asymptotically at least as efficient as the adjacency-

matrix representation, the simplicity of an adjacency matrix may make it preferable when graphs 

are reasonably small. Moreover, if the graph is unweighted, there is an additional advantage in 

storage for the adjacency-matrix representation. Rather than using one word of computer 

memory for each matrix entry, the adjacency matrix uses only one bit per entry. 

 

 

iii. Closed Graph 

A graph G consists of two types of elements: vertices and edges. Each edge has two endpoints, 

which belong to the vertex set. We say that the edge connects (or joins) these two vertices. 

The vertex set of G is denoted V(G), or just V if there is no ambiguity. 

An edge between vertices u and v is written as {u, v}. The edge set of G is denoted E(G), or 

just E if there is no ambiguity. 

The graph in this picture has the vertex set V = {1, 2, 3, 4, 5, 6}. The edge set E = {{1, 2}, 

{1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}. 

 

A self-loop is an edge whose endpoints is a single vertex. Multiple edges are two or more edges 

that join the same two vertices. 

A graph is called simple if it has no self-loops and no multiple edges, and a multigraph if it 

does have multiple edges. 

The degree of a vertex v is the number of edges that connect to v. 

A path in a graph G = (V, E) is a sequence of vertices v1, v2, …, vk, with the property that there 

are edges between vi and vi+1. We say that the path goes from v1 to vk. The sequence 6, 4, 5, 1, 2 

is a path from 6 to 2 in the graph above. A path is simple if its vertices are all different. 



A cycle is a path v1, v2, …, vk for which k > 2, the first k - 1 vertices are all different, and v1 = vk. 

The sequence 4, 5, 2, 3, 4 is a cycle in the graph above. 

A graph is connected if for every pair of vertices u and v, there is a path from u to v. 

If there is a path connecting u and v, the distance between these vertices is defined as the 

minimal number of edges on a path from u to v. 

A connected component is a subgraph of maximum size, in which every pair of vertices are 

connected by a path. Here is a graph with three connected components. 

 

Trees 

A tree is a connected simple acyclic graph. A vertex with degree 1 in a tree is called a leaf. 

Directed graphs 

A directed graph or digraph G = (V, E) consists of a vertex set V and an edge set of ordered pairs 

E of elements in the vertex set. 

Here is a simple acyclic digraph (often called a DAG, “directed acyclic graph”) with seven 

vertices and eight edges. 

 

 



 

iv. Directed Graph 

A directed graph is graph, i.e., a set of objects (called vertices or nodes) that are connected together, 

where all the edges are directed from one vertex to another. A directed graph is sometimes called a 

digraph or a directed network. 

A directed graph (or digraph) is a set of vertices and a collection of directed edges that each connects an 

ordered pair of vertices. We say that a directed edge points from the first vertex in the pair and points to 

the second vertex in the pair. We use the names 0 through V-1 for the vertices in a V-vertex graph.  

 

Glossary. 

Here are some definitions that we use.  

 A self-loop is an edge that connects a vertex to itself.  
 Two edges are parallel if they connect the same ordered pair of vertices.  
 The outdegree of a vertex is the number of edges pointing from it.  
 The indegree of a vertex is the number of edges pointing to it.  
 A subgraph is a subset of a digraph's edges (and associated vertices) that constitutes a digraph.  
 A directed path in a digraph is a sequence of vertices in which there is a (directed) edge pointing 

from each vertex in the sequence to its successor in the sequence, with no repeated edges.  
 A directed path is simple if it has no repeated vertices.  
 A directed cycle is a directed path (with at least one edge) whose first and last vertices are the 

same.  
 A directed cycle is simple if it has no repeated vertices (other than the requisite repetition of the 

first and last vertices).  
 The length of a path or a cycle is its number of edges.  
 We say that a vertex w is reachable from a vertex v if there exists a directed path from v to w.  
 We say that two vertices v and w are strongly connected if they are mutually reachable: there is 

a directed path from v to w and a directed path from w to v.  
 A digraph is strongly connected if there is a directed path from every vertex to every other 

vertex.  
 A digraph that is not strongly connected consists of a set of strongly connected components, 

which are maximal strongly connected sub graphs.  
 A directed acyclic graph (or DAG) is a digraph with no directed cycles.  



     

 

Digraph graph data type. 

We implement the following digraph API.  

 

The key method adj() allows client code to iterate through the vertices adjacent from a given 

vertex.  

We prepare the test data tiny DG txt using the following input file format.  

 

https://algs4.cs.princeton.edu/42digraph/tinyDG.txt


Graph representation. 

We use the adjacency-lists representation, where we maintain a vertex-indexed array of lists of the 

vertices connected by an edge to each vertex.  

 

Digraph.java implements the digraph API using the adjacency-lists representation. 

AdjMatrixDigraph.java implements the same API using the adjacency-matrix representation.  

Reachability in digraphs. 

Depth-first search and breadth-first search are fundamentally digraph-processing algorithms.  

 Single-source reachability: Given a digraph and source s, is there a directed path from s to v? If 
so, find such a path. DirectedDFS.java uses depth-first search to solve this problem.  

 Multiple-source reachability: Given a digraph and a set of source vertices, is there a directed 
path from any vertex in the set to v? DirectedDFS.java uses depth-first search to solve this 
problem.  

 Single-source directed paths: given a digraph and source s, is there a directed path from s to v? 
If so, find such a path. DepthFirstDirectedPaths.java uses depth-first search to solve this 
problem.  

 Single-source shortest directed paths: given a digraph and source s, is there a directed path from 
s to v? If so, find a shortest such path. BreadthFirstDirectedPaths.java uses breadth-first search 
to solve this problem.  

Cycles and DAGs. 

Directed cycles are of particular importance in applications that involve processing digraphs. The input 

file tinyDAG.txt corresponds to the following DAG:  

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html
https://algs4.cs.princeton.edu/42digraph/AdjMatrixDigraph.java.html
https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html
https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html
https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html
https://algs4.cs.princeton.edu/42digraph/BreadthFirstDirectedPaths.java.html
https://algs4.cs.princeton.edu/42digraph/tinyDAG.txt


 

 

 Directed cycle detection: does a given digraph have a directed cycle? If so, find such a cycle. 
DirectedCycle.java solves this problem using depth-first search.  

 Depth-first orders: Depth-first search search visits each vertex exactly once. Three vertex 
orderings are of interest in typical applications:  

o Preorder: Put the vertex on a queue before the recursive calls.  
o Postorder: Put the vertex on a queue after the recursive calls.  
o Reverse postorder: Put the vertex on a stack after the recursive calls.  

DepthFirstOrder.java computes these orders.  

 

 Topological sort: given a digraph, put the vertices in order such that all its directed edges point 
from a vertex earlier in the order to a vertex later in the order (or report that doing so is not 

https://algs4.cs.princeton.edu/42digraph/DirectedCycle.java.html
https://algs4.cs.princeton.edu/42digraph/DepthFirstOrder.java.html


possible). Topological.java solves this problem using depth-first search. Remarkably, a reverse 
post order in a DAG provides a topological order.  

 

 

Proposition. 

A digraph has a topological order if and only if it is a DAG.  

Proposition. 

Reverse post order in a DAG is a topological sort.  

Proposition. 

With depth-first search, we can topologically sort a DAG in time proportional to V + E.  

Strong connectivity. 
Strong connectivity is an equivalence relation on the set of vertices:  

 Reflexive: Every vertex v is strongly connected to itself.  
 Symmetric: If v is strongly connected to w, then w is strongly connected to v.  
 Transitive: If v is strongly connected to w and w is strongly connected to x, then v is also strongly 

connected to x.  

Strong connectivity partitions the vertices into equivalence classes, which we refer to as strong 

components for short. We seek to implement the following API:  

 

Remarkably, KosarajuSharirSCC.java implements the API with just a few lines of code added to 

CC.java, as follows:  

 Given a digraph G, use DepthFirstOrder.java to compute the reverse post order of its reverse, 
GR.  

 Run standard DFS on G, but consider the unmarked vertices in the order just computed instead 
of the standard numerical order.  

https://algs4.cs.princeton.edu/42digraph/Topological.java.html
https://algs4.cs.princeton.edu/42digraph/KosarajuSharirSCC.java.html
https://algs4.cs.princeton.edu/41graph/CC.java.html
https://algs4.cs.princeton.edu/42digraph/DepthFirstOrder.java.html


 All vertices reached on a call to the recursive dfs() from the constructor are in a strong 
component (!), so identify them as in CC.  

Proposition. 

The Kosaraju-Sharir algorithm uses preprocessing time and space proportional to V + E to support 

constant-time strong connectivity queries in a digraph.  

Transitive closure. 

The transitive closure of a digraph G is another digraph with the same set of vertices, but with an edge 

from v to w if and only if w is reachable from v in G.  

 

 

TransitiveClosure.java computes the transitive closure of a digraph by running depth-first search 

from each vertex and storing the results. This solution is ideal for small or dense digraphs, but it 

is not a solution for the large digraphs we might encounter in practice because the constructor 

uses space proportional to V^2 and time proportional to V (V + E).  

 

 

 

 

 

 

 

https://algs4.cs.princeton.edu/42digraph/TransitiveClosure.java.html


v. Cycle 

Cycle: a simple path with no repeated vertices or edges other than the starting and ending vertices. A 
cycle in a directed graph is called a directed cycle. Multiple edges: in principle, a graph can have two or 
more edges connecting the same two vertices in the same direction.  

Cycle Graph: In graph theory, a graph that consists of single cycle is called a cycle graph or 

circular graph. The cycle graph with n vertices is called Cn.  

Properties of Cycle Graph:- 

 It is a Connected Graph. 

 A Cycle Graph or Circular Graph is a graph that consists of a single cycle.  

 In a Cycle Graph number of vertices is equal to number of edges. 

 A Cycle Graph is 2-edge colorable or 2-vertex colorable, if and only if it has an even 

number of vertices. 

 A Cycle Graph is 3-edge colorable or 3-edge colorable, if and only if it has an odd 

number of vertices. 

 In a Cycle Graph, Degree of each vertx in a graph is two. 

 The degree of a Cycle graph is 2 times the number of 

vertices. As each edge is counted twice. 

Examples: Input: Number of vertices = 4 

Output: Degree is 8 

        Edges are 4 

Explanation:  The total edges are 4 and the Degree of the Graph is 8 as 2 

edge incident on each of  

the vertices i.e on a, b, c, and d.  
Input: number of vertices = 5 

Output: Degree is 10 

        Edges are 5 

 

 

 

 

 

 

 



Q3. Sort the following list using Insertion Sort.       

15, 4, 11, 3, 5, 1 

                                       

Insertion sort: 

An insertion sort algorithm is one that sorts by inserting records in an existing sorted 

array. An example of a simple insertion sort is as follows. Assume that the keys in the 

first i - 1 array slots are sorted. Let x be the value of the key in the ith slot. Compare x in 

sequence with the key in the (i - 1) st slot, the one in the (i - 2) nd slot, etc., until a key 

is found that is smaller than x. Let j be the slot where that key is located. Move the keys 

in slots j +1 through i - 1 to slots j +2 through i, and insert x in the (j + 1)st slot. Repeat 

this process for i = 2 through i = n 

Insertion Sort 

Problem: Sort n keys in nondecreasing order. 

Inputs: positive integer n; array of keys of keys S indexed from 1 to n. 

Outputs: the array S containing the keys in nondecreasing order. 

INSERTION-SORT(A) 

   for i = 1 to n 

    key ← A [i] 

     j ← i – 1 

    while j > = 0 and A[j] > key 

     A[j+1] ← A[j] 

     j ← j – 1 

    End while  

    A[j+1] ← key 

  End for  

How Insertion Sort Works? 

The first element in the array is assumed to be sorted. Take the second element and store it separately 

in key. 

 

Compare key with the first element. If the first element is greater than key, then key is placed in front 

of the first element. 

Example. We color a sorted part in green, and an unsorted part in black. Here is an insertion sort 

step by step. We take an element from unsorted part and compare it with elements in sorted part, 

moving form right to left.  

29, 20, 73, 34, 64  

29, 20, 73, 34, 64  

20, 29, 73, 34, 64  

20, 29, 73, 34, 64  



20, 29, 34, 73, 64  

20, 29, 34, 64, 73  
Let us compute the worst-time complexity of the insertion sort. In sorting the most expensive 

part is a comparison of two elements. Surely that is a dominant factor in the running time. We 

will calculate the number of comparisons of an array of N elements:  

we need 0 comparisons to insert the first element 

we need 1 comparison to insert the second element 

we need 2 comparisons to insert the third element 

... 

we need (N-1) comparisons (at most) to insert the last element  

Totally,  

1 + 2 + 3 + ... + (N-1) = O(n2)  

The worst-case runtimecomplexity is O(n2).What is the best-case runtime complexity? O(n). The 

advantage of insertion sort comparing it to the previous two sorting algorithm is that insertion 

sort runs in linear time on nearly sorted data. 

Now we have the 

value 

15, 4, 11, 3, 5, 1 
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