Department of Electrical Engineering Sessional Assignment

<u>Course Details</u>						
Course Title: Instructor:	Digital Signal Processing SIR PIR MEHAR ALI	Module: Total Marks:	<u> </u>			
	Student Details					
Name:	RAFI UD DIN	Student ID:	12401			

	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order	Marks 6
		difference equation	
		y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)	
		To the input $r(n) = 4^n u(n)$	
01			
Q1.	(b)	Determine the impulse response and unit step response of the systems described by	
	(0)	Determine the impulse response and unit step response of the systems described by	
		the difference equation.	
		y(n) = 0.6y(n-1) - 0.8y(n-2) + x(n)	
	(a)	Determine the causal signal $x(n)$ having the z-transform	Marks 6
		1	
		$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	
00			
Q2.		(Hint: Take inverse z-transform using partial fraction method)	
	(h)	(Thit Take inverse 2 dansform asing partial naction method)	
	(0)	Determine the partial fraction expansion of the following proper function	
		Determine the partial fraction expansion of the following proper function	
		1	
		$X(z) = \frac{1}{1 + 1 + 1 + 1 + 1}$	
		$1 - 1.5z^{-1} + 0.5z^{-2}$	
		A two- pole low pass filter has the system response	Marks
0.2			4
Q.3	(a)	b_o	
		$H(Z) = \frac{1}{(1 - nZ^{-1})^2}$	
		Determine the values of b_0 and p such that the frequency response $H(\omega)$ satisfies the	
		$\mu_{\rm response}$ in $ \pi_{\rm response}\pi_{\rm response}\pi_{\rm response}\pi_{\rm response}$	
		condition $H(0) = 1$ and $ H(\frac{1}{4}) ^2 = \frac{1}{2}$.	

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$.	
Q 4	(c)	A finite duration sequence of Length L is given as $x(n) = \{1, 0 \le n \le L - 10, \text{ otherwise} \}$	Marks 4
		Determine the N- point DFT of this sequence for $N \ge L$	
	(d)	Compute the DFT of the four-point sequence $x(n) = (0 \ 1 \ 2 \ 3)$	

Page 1 QN01 Sol: The characteristic equation is (a)J2 - 41 + 4 = 0 1= 2,2 ym (m) = e1 2"+ 6 n2" The particular solution is $dp(n) = k(-1)^{n} u(n)$ $\mathcal{U}(-1)^{n} \mathcal{U}(n) - \mathcal{U}(n-1)^{n-1} \mathcal{U}(n-1) + \mathcal{U}(n-1)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2) = \mathcal{U}(n-2)^{n-1} \mathcal{U}(n-2)^{n (-1)^{n}$ $4(n) - (-1)^{t-1} y (n-1)$ For m=2 k(1+4+4)=>2=>k. = K = 1/9 total solution is $y(n) = \left(e_1 2^n + C_2 n^{2n} + \frac{2}{3} (-1)^n \right) y(n)$ initial condation we have you For 40) = 1, y=2 thm $C_1 \neq \frac{2}{9} = 1$ $=> C_1 = \frac{7}{9}$ $2C_{1} + 2C_{2} - \frac{2}{19} = 2$

=> (2= /3 BNO1 parto(b) 8- The charatenstic equation 11 12-0.71+0.1=0 1 = 1/2 $y_n(n) = c, \frac{1}{2} + c_2$ with 7(2) = f(1) we have y(0) = 2y(0) = 0.7y(0) = 0 = 0 = 0 = 1.4Hence CI+C2=2 and $\frac{1}{2}C_{1} + \frac{1}{2}C_{2} = 1.4 = \frac{7}{1}$ $C_1 + \frac{2}{5}C_2 = \frac{14}{5}$ the evaluation yield $C_{1} = \frac{10}{3}, C_{2} = -\frac{4}{3}$ $h(n) = \frac{10}{3} (\frac{1}{3})^{n} - \frac{4}{3} (\frac{1}{5})^{n}$ 4 (m)

3 set response is $O(n) = \stackrel{*}{\underset{k=0}{\overset{}}} h(n-k)$ The $\frac{10}{3} \stackrel{\text{e}}{=} \left(\frac{1}{2}\right) n - k - \frac{9}{3} \stackrel{\text{h}}{=} \left(\frac{1}{5}\right) n - k$ $\frac{10}{3} \left(\frac{1}{2}\right)^{m} \frac{10}{2} \frac{10}{120} - \frac{10}{3} \left(\frac{1}{3}\right)^{m} \frac{10}{25} \frac{10}{120} \frac{10$ Z $= \frac{19}{3} \left(\frac{1^{n}}{2} \left(2^{n+1} - 1 \right) + \frac{1}{3} \left(\frac{1}{5} \left(\frac{5^{n+1}}{5} - 1 \right) \right)$ 4(n).

4 (9) =-58]=-7(2)= $(1-2^{-1})^2$ (1-22) X(2) = 1-2-1) 2 $(1+22^{-1})$ 34 X(z) =1-221 4(1+22-1 2-1 -12 + $(1 - 2^{-1})^2$ applying By inverse transform. $X(n) = \frac{1}{8}(-1)\frac{1}{4(n)} - \frac{3}{8}\frac{1}{4(n)} + \frac{1}{2}n\frac{1}{4(n)}$ 1/2 (-1)" + 3/2 + 1/2 4(21) N

5 SNO2 (b)Sof:-First we elemenate the negative power by Multiplying both numerator and deminutor by 22 Thees demintor and $X(z) = \frac{z^2 V}{z^2 - 1.5 z + 0.5}$ The poles are X(2) are pi=1 and p=0.5 $\frac{X(z)}{z} = \frac{z}{(z-1)(z-0.5)} = \frac{A_1}{z-1} + \frac{A_2}{z-0.5}$ To determine A_1 and A_2 is to multiply the equation by deminutor term $(2-1) (2=0.5) \qquad \forall$ $2 = (2-0.5)A_1 + (2-1)A_2$ $2 = p_1 = 2 \qquad l = (1-0.5)A_1$ thus we obtain -like result $A_1 = 2$ and $set = p_2 = 0.5$ to elemnify A_1 $0.5 = (0.5 - 1)A_2$ Az = -1 The result of partial prechion is 30 $\frac{\chi(z)}{z} = \frac{z}{z^{-1}} - \frac{1}{z^{-0.5}}$

1 Ъ QN03 (a):-Sof:- At w = 0 we have $H(0) = b_0 = 1$ $(1-p)^2$ Hence $b_0 = (1-p)^2$ 1.2 1.0 0.8 (m)H 6.6 0.5 0,2 ٥ -1 - 1/2 1/2 0 π 10 20 Log (H(w) 0 -10 -20 -30 -40 -50 1/2 -1 - 1/2 T 0

Ø 7 T 7/2 0 -77/2 -7 7/2 T - 1/2 Ο -7 At W= 1/4 $\begin{pmatrix} \pi_{4} \\ 7_{4} \end{pmatrix} = \underbrace{\left(1 - P \right)^{2}} \\ \left(1 - P e^{-j\pi_{4}} \right)^{2}$ Н $\frac{(1-p)^{2}}{(1-p)(\cos(\pi/4) + jp \sin(\pi/4))^{2}}$ $= (1 - P)^{2}$ $1 - P/\sqrt{2} + jP/\sqrt{2})^{2}$ $= \frac{(1-p)^{4}}{\left[\left(\frac{1-p}{\sqrt{2}}\right)^{2} + \frac{p^{2}}{2}\right]^{2}} = \frac{1}{2}$

. 8 · 16 8NO3 Part (b):-Sof: By the filter requirments:-Poles Piz = ret/1/2 pass band center Zeroes Zuz = ±1 Stopband Cantur. $\frac{G(2-1)(2+1)}{(2-jr)(2+jr)} = \frac{G(2^2-1)}{2^2+r^2}$ H(z) ==> By the pilter requirement $(\frac{1}{2}) = G = \frac{-2}{-1+Q^2} = 1$ H $\frac{1-\gamma^2}{2}$ 4 Set & use H (47/9) = 1/52 To $\frac{(1-r^2)^2}{2-2\cos(8\pi/9)}$ $\frac{1+r^4+2r^2\cos(8\pi/9)}{4}$ H F 2 gives $\gamma^2 = 0.7$ llewefore E valeating $= 0.15 \quad 1 - 2^{-2} \\ 1 + 0.72^{-2}$ (z)

10 ON04 (a) Soften The Koumer Fransform sequen is L = 1 $\chi(w) = E T(n) e^{-1}wr$ $\chi(w) = 1$ Thes R $\frac{1-1}{E} = -j\omega t = 1 - e^{-j\omega L}$ $\eta = 1 - e^{-j\omega L}$ $= \frac{\sin(\omega l/2)}{e} - \frac{j\omega(l-1)/2}{e}$ $\frac{1-e^{-j2\pi k l/N}}{1-e^{-j2\pi k l/N}}$ X(K)= K= 0, 1 --- N-1 Sim (TKL/N) e-JT K(L-1)/N -Sim (TK/N) 17(0) 10 8 6 4 2 3 1/2 0 0 17 21 1

12 (1/w) T 1/2 N 0 27 1 -1/2 -1 10 the N is selected such that NZC then DFT became EL k=0 x(u) = D ll= 1, 2 ---- L-1 thus there is only one nonzero value

12 QN04 b) K+N/2 5078- WN WNK 2 Then Mahm can be entend by W_{N}^{0} W_{N}^{0} W_{N}^{1} W_{N}^{0} W_{N}^{1} W_{N}^{4} W_{N}^{0} W_{N}^{2} W_{N}^{4} W_{N}^{0} W_{N}^{1} W_{N}^{1} 241-1) 241-1) WN WNZ WN2 WN WN3 WN4 WNI 2 WN 2 WN3 WN 1 1 i -1 ~ -1 -j 1 1 l, Xy = WNXY =4 Thin Ay