Department of Electrical Engineering
 Sessional Assignment
 Date: 06/05/2020

Course Details

Course Title: Thermodynamics \qquad Module:
02
Instructor: Sir Mujtaba Ehsan
Total Marks: 20

Student Details

Name: \qquad Junaid Ur Rehman

Student ID: 11484

Q1		Let the initial volume of the gas in a container be 06 liters and the initial pressure be 04 atm . The piston is compressed at a constant temperature to a new final volume of 2.50 L . Evaluate the final pressure in units of atm, mmHg and psi .	$\begin{aligned} & \hline \text { Marks } \\ & 06 \\ & \hline \end{aligned}$
			CLO 2
Q2		State the following statement as True or False and also give the reason for your answer: "There is a direct relationship between air pressure and altitude".	Marks 03
			CLO 2
Q3		A volume of $8 \mathrm{ft}^{3}$ of steam at a pressure of $100 \mathrm{lb}-\mathrm{f} / \mathrm{in}^{2}$ is expanded hyperbolically to a pressure of $18.3 \mathrm{lb}-\mathrm{f} / \mathrm{in}^{2}$ Calculate the work done by steam.	Marks 06
			CLO 1
Q4	i.	Outline the differences between work and heat. Describe the meaning of the term $\Delta Q=\Delta W$	Marks
			CLO 1

Q1
Let the initial volume of the gas in a container be 06 liters and the initial pressure be 04 atm. The piston is compressed at a constant temperature to a new final volume of 2.50 L . Evaluate the final pressure in units of atm, mmHg and psi .

Answer:

Answer:
(2)
junaid -ur-Parman
QR
\therefore Ans, False $I D=11484$
due to the amos, atmospheric pressure dec reaves, This is elevation.

At lower elevation. you have more air above you and thus more pressure.

At higher elevations. you have less air above you and thus less pressure.
At higher elevation food takes longer time too cook due to low pressure. so at high altitude pressure cooker is used to cook food.

| Q3. | A volume of $8 \mathrm{ft}^{3}$ of steam at a pressure of $100 \mathrm{lb}-\mathrm{f} / \mathrm{in}^{2}$ is expanded hyperbolically to a pressure
 of $18.3 \mathrm{lb}-\mathrm{f} / \mathrm{in}^{2}$
 Calculate the work done by steam. |
| :--- | :--- | :--- |

(11484)

Tunaid-ur-Rehman
Qu
n)

Data

$$
\begin{aligned}
& v 1=8 \mathrm{ft}^{3} \\
& p_{1}=100 \mathrm{lb} / \mathrm{ln}^{2} \\
& p_{2}=18.3 \mathrm{lb}-\mathrm{f} / \ln ^{2}
\end{aligned}
$$

word done?
Solution

$$
\begin{aligned}
p_{1} v_{1} & =p_{2} v_{2} \\
v_{2} & =\frac{p_{1}}{p_{2}} v_{1} \\
& =\frac{10.0}{18.3} \times 8 \\
v_{2} & =43.78 t^{3} \\
\text { Wordtdone } & =p_{1} v_{1}=\ln \left(\frac{v_{2}}{v_{1}}\right) \\
& =100 \times 18.3 \times 8 \ln \left(\frac{43.7}{8}\right)
\end{aligned}
$$

Wonder $=224857.35 \mathrm{As}$.

Q4. \quad i. \quad Outline the differences between work and heat.
ii. Describe the meaning of the term $\Delta \mathrm{Q}=\Delta \mathrm{W}$

Answer:

Q $4(A) \rightarrow$
Ans:- heat and work are two different ways of tronsfaming
energy from che system lo cather the distinction between heat and work is important in the Field of thermodynamics heat is the transfer of theimal energul between system. While Work is the transfer a mechnical energy between two system Main difference \# (2) The second law allows work to be tens formed fully into heat but forbids heat to be totally converted into work. if heat could be transformed fully into work it would wioater violate the low of entropy. The maximum amount of work one con attain from heat is given by the (arnot efficiency
(2) Heat is the energy associated with the random motion q particles. While work is the energy of orclered motion in one direction. Therefore heat is low quality energy and work is highly quality energy. and this supports the entropy statement of the second law.

S
murcia (4. Rehrion
1484
D/W heat and work
(1) interalias
(2) requies
(3) Process
(4) positive values
(5) negative values
(6) Equilibrium

Mechanical Farce and dis placemen
macroscopic pushes and pulls
$W>0$ when a gas
is
is compressed energy is transferred into system
W<O when a gas Q<O when the system is at a higher transferred out of system
A system is out of thenterded A system is in mechnial of the system. equiliboium whenthry A system is in thermal equilibrium is no net force or torque on it
thermal Temperature difference microscopic collision)

Q >0 when the environment is at a higher temperature then the System. energy is transferred into system. temperature the equiliboin
is no net force or when it is at the same temperatus. as the enviroment.
Q. $4(b):-$

Junciad -er-Pehmen
11484

Ans \# delta Q, is the net heat transferred in to the syskm - that is Q is the sum q all heat transfer into the and out of the system. Where delta W is the net work dene by the system that is W is the sumo all work done on or by the system.
delta Q
is + if heat enter gas
is - if heat exits gas
is 0 if no heat exchanged
delta w (work dane on gas)

$$
\text { is } t \text { if gas is compressed }
$$

is - if gas expands
is 0 if volume is constant

