MID TERM ASSIGNMENT SPRING 2020

NAME: FAIZULLAH KHAN

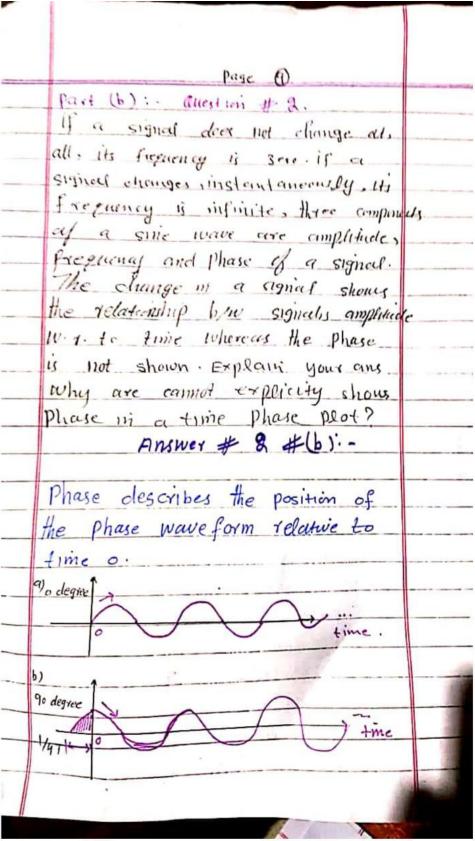
ID: 14840

DEPARTMENT: BS (SE)

SECTION: B

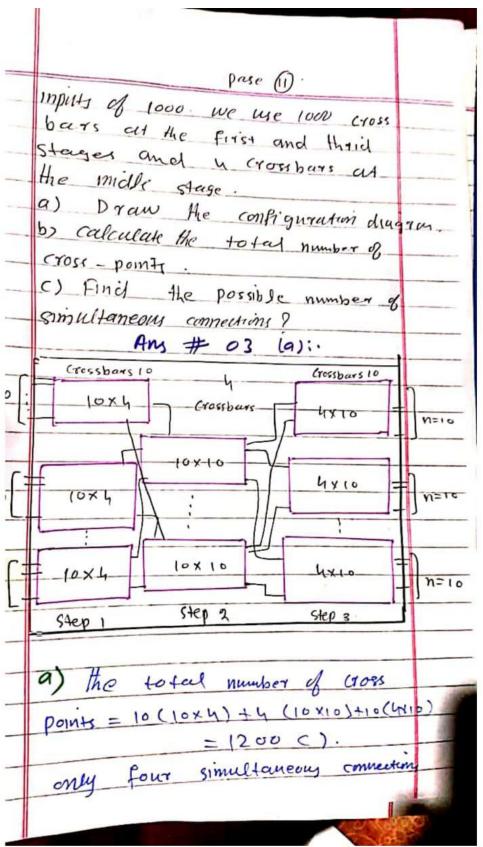
PAPER: NETWORKING

page (3) of the goodness of electronic Communications channels. 4 specifies the maximum rate at which data can be transmited without error if an appropriate code is used (it took nearly a half-century) to find codes that approached the shannon capacity). IV) compare and contrast flow control and error control. IV) Answer: The main difference between the flow control and error contral is that the flow control observes the proper flow of the data from sender to receiver, on the other hand, the error control observes that the data delived to the receiver is error free and relaible V) Define piggybacking and use Answer: -"Piggybacking" is used to improve the efficiency of bidirectional transmission. When a frame is


pase (4)
is carrying data from A to B.
It can also carry control informat
about frames from B, when a
frame is carrying data from
B to H, H can also carry
Control information about
frames from A.
VI) HDLC W.r. + Station types
transfer made, frame types,
Supported and flag field
 purpose?
Vi) Answer:
 9+ is a data link protocol,
data is organized into frames
HDLC supports two types of transfe
 modes, normal response mode
Normal Response mode (NRM) -
here two types of stations are
Hore, a Primary Station
Llag - it is an Q-bit seguence
 that marks the beginning and
 the end of the frames.
 Mili) Name the protocol for
 noiseless channels?
 YIOISEOCIA

	Page 6	
_	VII) Priswer :-	
_	Stop- and - wais for a	
	July Valley Chalacat 6	
	33 ON OF THOUSE COME	
	unidirect channels. 4: provides	_
	With flow and data transmission	-
	With flow control facilities but without error control facilities.	
	VIII) What is differential encoding	9
	All explain the difference blu	
	MRZ-L and MRZI and name the	
	coding schemes of midtilevel brian	
	& bi-phase.	
	Viii) Ams: -	
	Differential excoding: -	1
	differential encoding is a digital	4
	encoding feelinique where by a	-
	hmary value is denoted by a sig	
	not change latter than a Fartit	dex
	cional chate here i simon	-
	and the distriction of the encoded	-
- 1	1 1000	-
	and the factor of	100000
-	values and crated with each date	2
	rilles une	
	value:	

page (6) Difference b/w NRZ-L and NRZ-1: Non- return - to- zero - Level (MRZ-L) is a data encoding scheme m Which a negative valtage is used to represent binary one and a Positive valtage is used to represent binary Zero. As with NRZ-L, NRZ-1 maintaines a constant voltage pulse for the duration of a bit time this distinguishes NRZI via NRZ-Level. name the coding scheme of multibinary & bi- phage: -We can toughly divide line coding schemes into five categories: Unipolar (e.g NRZ scheme). palar (e.g NRZ-L) NRZ-1, RZ and Biphase multileve. and multitransition. Question # 02 (9):-There are several network layer models proposed in the (051) model. Find all of them Explain the differencesces b/w them.


AMWer # 2 (9): -Whether it's whied or wire less, most dato communications today happens by way of packets of Information travelling over one or more networks. but before these networks com work together though They must use a common protocos and receiving these padeets of data many protocols have been developed one of the most widely Wed is the transmission control protocos / internet protocos (TCP) IP). Also a generic protocal model used in describing network communications Known as the open system interconnection (OSI). model is useful for comparing and contrasting deferent protects. The OSI Model:-Designated ISO/IEC 7498-1, The osi model is a standard of the international organization for standard 13 aition (150). It is

for discussing or how computors computers		
for discussing or how computors com		
for discussing or how computors com		
how computors com		-
now computors com	re paradigm	
with one another a	describing	-
with one another a	municate	
	over a network	
Its seven layered	approach	_
to data transmissi	on divides the	
many operations up	me specific	-
related groups of a	MEREYMA	_
data layerdwice	Aptronia	
7. Application	7 T	
Heoder 6 presentation	6 7	
5 Sesson	FITT	7
4 Transport	, ,	
3 Network	3 11	
1 2 data line	2 7	
Dhuscal Dhuscal		_
physical C	1	_
Produs		
		-
		1

Scanned with CamScanner

page (10) 180 degree Question # 03 (as:-A device is sending out a dara at the rute of 100 bps. How long does it take to send and a signale charactor (8 bits)? Am # 03 (9): -HOD long does it take to send out 100 bits -100/100 = 1 sec. How long does it takes to send our single character of B-bits. 8/100 = 0.008 see. Hall long does it takes to send a file of 100,000 character. As single character is of 8-bit. (8* 100,000)/2000 = 400 sec. b): We need a Hige - stage space-division switch with total

pase (12)	
are possible for each crossbur at	
the first stage.	
b) this means that the total	
number of simultaneous connection	s
$\frac{1}{1} \frac{1}{1} \times 10 = 1$	
are possible for each crossbar	1.5
at the first stage. His meons	
that the total number of	
Simultaneous connection is	
4×10 = 10.	-
d) if we use one crossboar	_
(100 × 100), all inputy lines can	
have a connections of the same	
time, which meany 100 simulter-	
e) The blocking factor is	
40/100 or 40 percent.	
40/100 01 40	
TT	
Thank you.	-
	100
	100
	-
	1
	200