Engineering Mechanics

Submitted By: Muhammad Adeel
Class ID: 16115
Section: A
Instructor: Engr. M.Majid Naeem
Department: Civil Engineering
Semester: 2
Dated: 26-04-2020
Signature

Q1: Part-(a)

Two high strength flexible steel cables AB and AC are fastened to the ceiling of a building through high carbon steel hooks at point $B \& C$. These cables are knotted together to a 3 rd cable at point A which is holding a thick wall water tank weighting 400 pounds and is full of 3000 liters of water volume. What percentage of the whole weight is being held by cable AB alone? What amount of tensions must be there in both the cables to maintain the static equilibrium of the system? (7)

Part-(b)
If the water tank weight and volume of water are increased $\mathbf{1 5 \%}$ and $\mathbf{3 5 \%}$ respectively what effects will occur on results of Part-a. (3)

Solution:

$$
\begin{array}{ll}
\alpha=\tan ^{-1}\left(\frac{1.2}{0.8}\right) & =56.3^{0} \\
\beta=\tan ^{-1}\left(\frac{1.2}{2}\right) & =31.8^{0}
\end{array}
$$

Total mass $=400+6613.9$

$$
=7013.9 \mathrm{lb}
$$

OR

$$
=3181.45 \mathrm{~kg}
$$

The total weight is being held by cable AB is 85.8%.

Part A

Tension in AB

$\mathrm{T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{AB}} \wedge \mathrm{AB}=0.858(8181.45)(9.81)\{\cos 56.3 \mathrm{i}+\sin 56.3 j\}$
$=14857 \mathrm{i}+22278 \mathrm{j} \mathrm{N}$

Now tension in AC

$\mathrm{T}_{\mathrm{AC}}=\mathrm{T}_{\mathrm{AC}} \wedge \mathrm{AC}=0.555(3181.45)(9.81)\{\cos 31 \mathrm{i}+\sin 31 \mathrm{j}\}$
$=14857 \mathrm{i}+8921 \mathrm{j} \mathrm{N}$

Part B

Increase weight by 15\%
$400+60=460 \mathrm{lb}$
Increase volume by 35%
$3000+1050=4050 \mathrm{lb} \quad$ OR 8928.722 kg
Total weight $=8928.7+450 \quad$ by increasing 15% $=9378.7 \mathrm{lb}$

Tension in AB
$\mathrm{T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{AB}} \wedge \mathrm{AC}=0.555(4258.7)(9.8)\{\cos 31 \mathrm{i}+\sin 31 \mathrm{j}\}$
$=1.9874 \mathrm{i}+11942 \mathrm{j} \mathrm{N}$.

Q2: Four forces are exerted on the eyebolt as shown below. If the net effect on the bolt is a direct pull of 600 pounds in the y-direction, determine the values of T and θ (Marks=10)

Required:

$\theta=?$
$\mathrm{T}=$?

Solution:
$\Sigma \mathrm{Fx}=0$
$\mathrm{T} \sin 30^{\circ}+400 \cos 30^{\circ}-240 \sin \theta-360=0 \quad \Rightarrow$ eq 1
$\Sigma \mathrm{Fy}=600$
$\mathrm{T} \cos 30^{\circ}+240 \cos \theta+400 \sin 30^{\circ}=600$

$$
=>\text { eq } 2
$$

Numerical solution of equation $1 \& 2$
$\theta=21.7$
$\mathrm{T}=204 \mathrm{lb}$

Q3: Calculate the reactions at supports (Marks=10)

Required:

Ay= ?
$\mathrm{By}=$?

Solution:

\Rightarrow UDL $=$ convert to point load
$300 * 4=1200 \mathrm{lb}$
At point $=\frac{1}{2} * 4=2 \quad$ from B
$\Rightarrow \mathrm{UVL}=\frac{1}{2} * 400 * 8=1600 \mathrm{lb}$
At distance $=\frac{1}{3} * 8=2.66$ from A
\Rightarrow One load in kg convert to lb
$=500 * 2.0204=1010.2 \mathrm{lb}$

Jy Google Photos

Now
$\mathrm{Ax}=0$
$A y=0$
MA $=-1600 * 2.66-1800 * 7.5-1200 * 10-1102.31 * 8.35+$ Вy * 12
$=-4256-135000-12000-9204.28+$ By *12
$=-160460.12+$ By * 12
$B y=\frac{160460.12}{12}$
$B y=13371.69 \mathrm{lb}$
Ay $=\{$ Total load by $\}$
$\mathrm{Ay}=1200+1102.31+18000+1600-13371.69$
$\mathrm{Ay}=8530.31 \mathrm{lb}$
$\mathrm{Ay}=8530.31 \mathrm{lb}$
$\mathrm{By}=13371.69 \mathrm{lb}$

