

Final-Term – Semester Assignment

• Subject : Software Verification and

Validation

• Submitted To : Sir Zain shaukat

• Submitted by : Mian Zabihullah

• Degree : BS(SE)

• ID # 6947

• Semester : 6th

• Date : 25/06/2020

Software Verification and validation

Marks: 50

Q1. MCQS (10)

1. When should company stop the testing of a particular software?

Ans: b. It depends on the risks for the system being tested

2. White-Box Testing is also known as ________ .

Ans: d. All of the above

3. ___________ refers to a different set of tasks ensures that the

software that has been built is traceable to Customer Requirements.

Ans: c. Validation

4. ________ verifies that all elements mesh properly and overall

system functions/performance is achieved.

Ans: d. System Testing

5. What do you verify in White Box Testing?

Ans: d. All of the above.

6. __________ refers to the set of tasks that ensures the software

correctly implements a specific function.

Ans: a. Verification

7. Who performs the Acceptance Testing?

Ans: b. End users

8. Which of the following is not a part of Performance Testing?

Ans: c. Measuring the LOC.

9. Which of the following can be found using Static Testing

Techniques?

Ans: a. Defect

10. Testing of individual components by the developers are comes
under which type of testing?

Ans: c. Unit testing

Q2. Explain Black Box testing and White Box testing in detail.

Ans: Black Box Testing is a software testing method in which the

internal structure/ design/ implementation of the item being tested is
not known to the tester

https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/

White Box Testing is a software testing method in which the internal

structure/ design/ implementation of the item being tested is known to
the tester.

Differences between Black Box Testing vs White Box Testing:

 Black Box

Testing

 White Box

Testing

It is a way of software testing in

which the internal structure or the

program or the code is hidden and

nothing is known about it.

It is a way of testing the software in

which the tester has knowledge about

the internal structure r the code or the

program of the software.

It is mostly done by software testers. It is mostly done by software

developers.

No knowledge of implementation is

needed.

Knowledge of implementation is

required.

It can be referred as outer or external

software testing.

It is the inner or the internal software

testing.

It is functional test of the software. It is structural test of the software.

This testing can be initiated on the

basis of requirement specifications

document.

It is mandatory to have knowledge of

programming.

https://www.geeksforgeeks.org/software-engineering-white-box-testing/
https://www.geeksforgeeks.org/software-engineering-white-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-white-box-testing/
https://www.geeksforgeeks.org/software-engineering-white-box-testing/
https://www.geeksforgeeks.org/software-engineering-white-box-testing/

It is the behavior testing of the

software.

It is the logic testing of the software.

It is the logic testing of the software. It is generally applicable to the lower

levels of software testing.

It is also called closed testing. It is also called as clear box testing.

It is least time consuming. It is most time consuming.

It is not suitable or preferred for

algorithm testing.

It is suitable for algorithm testing.

Can be done by trial and error ways

and methods.

Data domains along with inner or

internal boundaries can be better tested.

Example: search something on google

by using keywords

Example: by input to check and verify

loops

Types of Black Box Testing:

• A. Functional Testing
• B. Non-functional testing
• C. Regression Testing

Types of White Box Testing:

• A. Path Testing
• B. Loop Testing
• C. Condition testing

White Box Testing Techniques:

o Statement Coverage o

Decision Coverage

o Branch Coverage o

Condition Coverage o

Multiple Condition

Coverage o Finite State

Machine Coverage o Path

Coverage o Control flow

testing o Data flow testing

Black Box Testing techniques:

o Decision table testing o

All-pairs testing o

Equivalence partitioning o

Boundary value analysis o

Cause–effect graph o Error

guessing o State transition

testing o Use case testing o

User story testing o Domain

analysis o Syntax testing o

Combining technique

Q3. Find the Cyclomatic Complexity and draw the Graph of this
code.

https://en.wikipedia.org/wiki/Decision_table
https://en.wikipedia.org/wiki/All-pairs_testing
https://en.wikipedia.org/wiki/Equivalence_partitioning
https://en.wikipedia.org/wiki/Boundary_value_analysis
https://en.wikipedia.org/wiki/Cause%E2%80%93effect_graph
https://en.wikipedia.org/wiki/Error_guessing
https://en.wikipedia.org/wiki/Error_guessing
https://en.wikipedia.org/wiki/State_transition
https://en.wikipedia.org/wiki/State_transition
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/User_story
https://en.wikipedia.org/wiki/Domain_analysis
https://en.wikipedia.org/wiki/Domain_analysis

Ans: Cyclomatic complexity will be equal to four (4).

Formula

1. Cyclomatic complexity = No of predicates +1

For the Given program, predicates are if, while. Total 2 if and 1 while

condition.

So answer will be 4.

Graph of the Code:

In the graph, Nodes represent processing tasks while edges represent
control flow between the nodes.

Flow graph notation for a program:

Flow Graph notation for a program defines several nodes connected
through the edges. Below are Flow diagrams for statements like if-else,

While, until and normal sequence of flow.

Consider three software items: Program-X, Control Flow Diagram of
Program-Y and Control Flow Diagram of Program-Z as shown below

The values of McCabe’s Cyclomatic complexity of Program-X, Program-Y

and Program-Z respectively are
(A) 4, 4, 7

(B) 3, 4, 7

(C) 4, 4, 8

(D) 4, 3, 8

Q4. What is Z specification and why it is used for, also give some
example this code written in Z specification.

Ans: Z Specification :

Z is a formal specification language for computer systems

which is based on set theory and predicate logic. There are
several textbooks on Z in the library, in particular: • The

Mathematics of Software Construction. A. Norcliffe & G. Slater.

Ellis Horwood, 1991. • Z User Manual. M.A. McMorran & J.E.

Nicholls. IBM Technical Report, 1989. • The Z Notation - A

Reference Manual. J.M. Spivey. Prentice–Hall, 1989. • An

Introduction to Formal Specification and Z. B. Potter, J. Sinclair &

D. Till. Prentice–Hall, 1996. The basic until of specification in Z is a
schema. A Z schema consists of a name, a declaration of variables
and a predicate.

: SchemaName x : X

 Predicate

Here, variable x is declared to be of type X (see section 2.2). Note
that the declaration part may declare more than one variable. The

predicate part is a predicate (see section 2.3) whose free variables
are those of the declaration plus any constants.

 Why it is use for:

The Z notation /ˈzɛd/ is a formal specification

language used for describing and modelling computing

systems. It is targeted at the clear specification of

computer programs and computer-based systems in

general.

 Example: 1

Theater: Selling tickets

(no output variables in this schema)

Purchase ()

TicketsForPerformance()

TicketsForPerformance()’

S? : Seat

P? : Person

S? & seating \ dom sold

Sold’ = sold ∪ { s? 7 → p?}

 Seating’ = seating

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program

 Example: 2

Response ::= okay | sorry

Then

 Purchase0 Success is a schema that
reports successful ticket sale

Success

r! : Response

r! = okay

Data dictionary modeling

• A data dictionary may be thought of as a mapping from a name (the

key) to a value (the description in the dictionary)

• Operations are

• Add. Makes a new entry in the dictionary or replaces an existing

entry.

• Lookup. Given a name, returns the description. – Delete. Deletes
an entry from the dictionary

• Replace. Replaces the information associated with an entry Intro |
Hello World | Schema | Operations 24

Basic Data Representation:

Function Summary:

 Datadictionary

D dict: NAME DataDictionaryEntry

Names Entries

Data dictionary initialization:

Add and lookup operations:

Init_datadictionary

DataDictionary

‘ D dict ’ = 0

Add_OK

∆ DataDictionary

Da taDictionaryEntry

∉ dom ddict

ddict ’ = ddict ∪ entry?.name { → entry? }

Accessing sub

elements

Lookup_OK

Ξ DataDictionary

 name?: NAME

entry!: DataDictionaryEntry

name? ∈ dom ddict

entry! = ddict(name?)

