

Name: Syed Muhammad Salman Khan

Id:13662

Subject:Software Design and Architecture

Submitted to: Mam Aasma Khan

Assignment:Final Term

Date 23/06/2020

Q.1:

a) What is software Architecture? Why is software architecture design so

important?

Ans: Software Architecture:. The fundamental organization of a system

embodied in its components, their relationships to each other, and to the

environments, and the principles guiding its design and evolution.

Software architecture design important:

⚫ A poor design may result in a deficient product that does not meet system

requirements,It is not adaptive to future requirement changes,It is not

reusable,

It exhibits unpredictable behaviour, or It performs badly.

b) Explain any four tasks of architect.

Ans: Tasks:

1) Perform static partition and decomposition of a system into subsystems

and communications among subsystems.

2) Establish dynamic control relationships among different subsystems in

terms of data flow, control flow orchestration, or message dispatching.

3) Consider and evaluate alternative architecture styles that suit the

problem domain at hand.

4) Perform trade off analysis on quality attributes and other non functional

requirements during the selection of architecture styles.

Q.2: Explain Architecture Business Cycle (ABC) in detail with figure.

Ans: Architecture Business Cycle (ABC):

Software architecture is a result of technical, business and social influences.

These are in turn affected by the software architecture itself. This cycle of

influences from the environment to the architecture and back to the

environment is called the Architecture Business Cycle (ABC). Its existence in

turn affects the technical, business, and social environments that subsequently

influence future architectures. We call this cycle of influences, from the

environment to the architecture and back to the environment, the

Architecture Business Cycle (ABC).

1. The organization goals of Architecture Business Cycle are beget

requirements, which be get an architecture, which be gets a system. The

architecture flows from the architect’s experience and the technical

environment of the day.

2. Three things required for ABC are as follows:

a. Case studies: Case studies of successful architectures crafted to

satisfy demanding requirements, so as to help set the technical

playing field of the day.

b. Methods: Methods to assess an architecture before any system is

built from it, so as to mitigate the risks associated with launching

unprecedented designs.

c. Techniques: Techniques for incremental architecture-based

development, so as to uncover design flaws before it is too late to

correct them.

Q.3: Explain ABC Activities?

Ans: ABC Activities:

1) Creating the business case for the system

- Why we need a new system, what will be its cost?

- Time to market, integration with existing systems?

2) Understanding the Requirements

- Various approaches for requirements elicitation i.e. , object-oriented

approach, prototyping etc.

- The desired qualities of a system shape the architecture decisions-

architecture defines the trade-off among requirements

3) Creating / selecting the architecture

4) Communicating the architecture

- Inform all stakeholders (i.e.., developers, testers, managers, etc.)

- Architecture’s documentation should be unambiguous

5) Analysing or evaluating the architecture

- Evaluate candidate designs

- Architecture maps the stakeholders’ requirements/ needs

6) Implementation based on architecture .

7) Ensuring conformance to an architecture.

Question No 04: (20)

Pair programming is an agile software development technique in which two

programmers work together at one work station. One types in code while the

other reviews each line of code as it is typed in. The person typing is called the

driver. The person reviewing the code is called the observer. The two

programmers switch roles frequently (possibly every 30 minutes or less).

Suppose that you are asked to build a system that allows Remote Pair

Programming. That is, the system should allow the driver and the observer to

be in remote locations, but both can view a single desktop in real-time. The

driver should be able to edit code and the observer should be able to “point”

to objects on the driver’s desktop. In addition, there should be a video chat

facility to allow the programmers to communicate. The system should allow

the programmers to easily swap roles and record rationale in the form of video

chats. In addition, the driver should be able to issue the system to backup old

work.

• Draw a use case diagram to show all the functionality of the system.

• Describe in detail four non-functional requirements for the system.

• Give a prioritized list of design constraints for the system and justify

your list and the ordering.

• Propose a set of classes that could be used in your system and present

them in a class diagram

Ans: part(a)

Assumptions:

* when the Driver edits code, we assume that the Observer can see the

changes in real

time through the ViewDesktop use case, thus there is no arrow pointing back

to the

Observer for the EditCode use case. A similar assumption is made for the

PointToObjects

use case, so no arrow points back to the Driver.

* we assume that both the Driver and Observer can initiate the ViewDesktop,

ChatVideo,

ViewDesktop

EditCode

pointToObject

ChatOnVideos

SwapRole

RecordRationale

IssueBackup

SwapRole, and RecordRationale use cases.

Q no 4(b)

⚫ Ease of use - the front-end interface must be simple and easy to use.

⚫ Security - the backup code should be kept securely and be protected from

unauthorized

access.

Driver immediately without delay; the video chat should be smooth without

delay also.

⚫ Availability - the system should be available to both programmers all the

time.

⚫ Portability - the programmers should be able to use the system

regardless of what

computer and operating system used by the programmers.

Q no 4(c)

Ease of Use:

Ease of use always ranks highly when it comes to what customers want from a

product or service. Whether it’s something they intend to use in their personal
lives, like a mobile phone, or their work lives, like office equipment or business
software, simplicity is crucial when attempting to make your product or service
stand out to potential customers.

Think of Apple products. Our trusty iPhones, iPads and MacBooks are as
popular as ever, and, arguably, that may not necessarily be because they are
the best gadgets on the market. Instead, Apple has always made its products
easy to use, with simple buttons, accessible screens and clear set up
instructions, meaning they have appealed to a wide range of customers over
the years.

Availability: How often does the system experience critical failures? and how much

time is it available to users against downtimes?

Portability:the system should be portable" is a NFR. This NFR may lead to a

constraint on the programming language used for the implementation of the

system (e.g., the programming language Java (rather than C and C++) might be

preferred in order to meet this NFR)

Security:security - the system must be secured" is a NFR. The design

constraints could be a user authentication must be in place, the

communication protocol must be encrypted, and/or the data must be stored

on a server behind firewall.

Question no 4(c)

The sample class diagram above captures most of the classes and relationships.

I have inserted an UnknownDesktop class for future extension of RPP.

Programmed

swapRole()

Driver

EditCode

Observer

Point At object()

Desktop

Apple Computer PC Unknown PC

GUI Manager

Data Manager

Code

Version no:String

video

Date:String

Rationale

Date:String

Ref

video:Video

A
ccess an

d

u
p

d
ate

Apple pc

Obviously when I designed this class diagram I already have the Abstract a

Factory design pattern in my mind.In our class diagram we don't need to

mention attributes and operations except for those really important ones.

Some of the operations can be extracted from the use case diagram. For

instance, you can probably spot very quickly that, under the Driver class, I

should have the issueBackup() operation. Also, under the Programmer class, I

should have the viewDesktop(), chatOnVideo(), and recordRationale()

operations. Maybe we should have Session as a class as well and associated

with DataManager? I left it out because it is not explicitly mentioned in the

description. Note that since AppleComputer and PC are not explicitly

mentioned in the description, if you don't have any subclasses under Desktop

it is fine as well.A second version is to have the Programmer class associated

with the Desktop class instead. However, in this second version we cannot

label the association whether it is 'edit' or 'point at objects'.The GUIManager

class and the DataManager class (both can be interfaces) are inserted to help

manage the display and the access of data. The model-view-controller (MVC)

software architecture pattern is adopted here: DataManager takes care of the

'model', the GUIManager, which interacts with DataManager and Desktop,

takes care of the 'view', and the operations carried out by the two programmer

compose the 'controller' part.

