
------- Good Luck -------

IQRA NATIONAL UNIVERSITY
Summer 2020 Final-Term Examination

Note: Submit paper along with your ID in pdf format

 Name : shayan khan ID : 6833

 Subject : OOSAD Submitted To : Sir Fahimullah

 Class : BS(SE)

Q1. Describe different elements of a use case diagram. (5)

Answer: Use case diagram is a subset of various behaviour diagrams. Use case

diagrams are used to provide concrete examples of the elements which are

supposed to implement. It is used to analyze objects.

The following are the elements of the use case diagrams:

Actors: An actor is one of the entities who perform certain actions. These roles are

the actual business roles of the users in given system. An actor interacts with a use

case of the system. For example, for a banking system, a customer is one of the

actors.

Course Name Max.

Marks

Max.

Time

Date Instructor

OOSAD/OOAD 50 9am to

1pm

23
th

 September, 2020 M. Fahimullah

------- Good Luck -------

Use Case: A use case is a use case diagram of UML represents a business

functionality that is distinct. The use case should list the discrete business

functionality that is specified in the problem statement. Every business

functionality is a potential use case.

System boundary: A system boundary defines the scope of the system. The

systems that use cases also need to be defined in the limits of the system. The

system boundary is shown as a rectangle that spans all use cases of the system

Q2. What is the purpose of a fork node? Provide example. (5)

------- Good Luck -------

Answer: For automation interface purposes, a Fork Node is a Control Node that

has its Node Type set to Fork Node. A Fork Node splits a flow into multiple

concurrent flows. A Fork Node has one incoming flow and multiple outgoing

flows.

In addition to the standard properties a Fork Node has these properties:

Visibility

Owned by

Activity

 Structured Activity Node— Applies only when the Fork Node is scoped directly

to a Structured Activity Node.

Owns

Comment

Constraint

Control Flow:The Control Flow is owned jointly by Fork Node and the associated

item. The access permissions you have to a Control Flow are determined by the

access permissions you have to its source item.

 Dependency — The Dependency is owned jointly by the Fork Node and the

other associated item. The access permissions you have to a Dependency are

determined by the access permissions of the dependent item.

IO Flow — The IO Flow is owned jointly by the Fork Node, the IO Flow's other

linked item and the IO Flow's IO Item.

Object Flow— The Object Flow is owned jointly by Fork Node and the associated

item. The access permissions you have to an Object Flow are determined by the

access permissions you have to its source item.

For Example:

Create a Fork Node through a Modeler explorer pane or an Activity Diagram:

• In a Modeler pane, right-click an Activity or Structured Activity Node, point to

New, point to Control Node, and then click Fork Node.

• On an Activity Diagram, click the Fork Node toolbar button, and then click in

free space or inside an Activity Partition, Interruptible Activity Region or

Structured Activity Node.

When used on an Activity Diagram, a Fork Node's notation is as follows.

https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/ref_prop_standard.html#wwID0E3M3Z
https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/ref_di_dependency.html#wwID0EXART

------- Good Luck -------

The View Options on an Activity Diagram allow you to show or hide the Name,

and orientate the Fork Node vertically or horizontally. In addition, the view options

allow you to dock the Fork Node onto the boundary of an Activity Partition. The

view options are set through the Control Node entry. See Control node view

options - activity diagram.

On an Activity Diagram, you can populate a Fork Node's missing Activity Flows,

Comments and Constraints: right-click the Fork Node, point to Populate, and then

click the appropriate command.

In the Dictionary pane, Fork Nodes are listed in the UML\Control Nodes folder.

In the Modeler panes, a short-cut symbol on the Fork Node's icon indicates that the

item is a stub.

Q3. What is the difference between conditional branch and fork in an activity

diagram? (5)

Answer: Conditional behavior is delineated by branches

A branch has a single incoming transition and several guarded outgoing
transitions. Only one of the outgoing transitions can be taken, so the
guards should be mutually exclusive. Using [else] as a guard indicates that
the "else" transition should be used if all the other guards on the branch are
false.

In Figure 1, after an order is filled, there is a branch. If you have a rush
order, you do an overnight delivery; otherwise, you do a regular delivery.

https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/control_node_view_options_activity_diagram.html#wwID0EGJNJD
https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/control_node_view_options_activity_diagram.html#wwID0EGJNJD
https://support.ptc.com/help/modeler/r9.0/en/Integrity_Modeler/rtsme/stubs.html#wwID0ELB3KD

------- Good Luck -------

------- Good Luck -------

A fork has one incoming transition and several outgoing transitions. When
the incoming transition is triggered, all of the outgoing transitions are taken
in parallel. Thus, in Figure 1, after you receive an order, you fill the order
and send the invoice in parallel.

The diagram says that these activities can occur in parallel. Essentially, this
means that the sequence between them is irrelevant. I could fill the order,
send the invoice, deliver, and then receive payment; or, I could send the
invoice, receive the payment, then fill the order and deliver you get the
picture.

There is an exception to the rule that all incoming states on a join must
have finished before the join can be taken. You can add a condition to a
thread coming out of a fork. The result is a conditional thread. During
execution, if the condition on a conditional thread is false, that thread is
considered to be complete as far as the join is concerned. So in Figure 2,
even if I don't feel like wine, I would still be able to eat my Spaghetti
Carbonara. (I must confess, though, that I've never had to test this rule
when executing this diagram!)

Figure 2

------- Good Luck -------

Q4. What is modeling? (5)

Answer: Modeling is one of the basic methods in empirical sciences. Gene-rally

speaking, it consists of the gradual construction of a cognitively use-ful – though

simplified and idealized – image of described phenomena. As this image often

takes the form of an abstract formal description – for example, a system of

equations, or a set of logical formulas – modeling re-lies significantly on formal

sciences such as mathematics, logic, or computer .

------- Good Luck -------

The following can be pointed to as typical examples of models con-structed in

empirical sciences: a) in physics – models of the atom, for example, the Bohr

atomic model; b) in neurobiology – models of the neu-ron, for example, the

McCulloch-Pitts linear neural model in psychology – computerized models of

semantic memory, forexample, Quillian’s network model in cognitive science –

partial2models of mind, including a rich collection of rule-based reasoningmodels

science.

Q5. Create USE CASE diagram for the following narrative: (15)

Create a Use Case diagram for an online university registration system. The system

should enable the staff of each academic department to examine the courses

offered by their department, add and remove courses, and change the information

about them (e.g., the maximum number of students permitted). It should permit

students to examine currently available courses, add and drop courses to and from

their schedules, and examine the courses for which they are enrolled. Department

staff should be able to print a variety of reports about the courses and the students

enrolled in them. The system should ensure that no student takes too many courses

and that students who have any unpaid fees are not permitted to register (assume

that a fees data store is maintained by the university’s financial office, which the

registration system accesses but does not change).

Answer:

------- Good Luck -------

Q6. What is singleton pattern? Provide code structure and also uml structure.

(5)

Answer: In software engineering, the singleton pattern is a software

design pattern that restricts the instantiation of a class to one "single"

instance. This is useful when exactly one object is needed to coordinate

actions across the system. The term comes from the mathematical concept

of a singleton.

code structure

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Instantiation_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Singleton_(mathematics)
https://en.wikipedia.org/wiki/Singleton_(mathematics)

------- Good Luck -------

The Singleton class declares the static method get Instance that returns
the same instance of its own class.

The Singleton’s constructor should be hidden from the client code. Calling
the getInstance method should be the only way of getting the Singleton
object.

Pseudocode

In this example, the database connection class acts as a Singleton. This
class doesn’t have a public constructor, so the only way to get its object is
to call the getInstance method. This method caches the first created object
and returns it in all subsequent calls.

// The Database class defines the `getInstance` method that
lets
// clients access the same instance of a database connection
// throughout the program.
class Database is
 // The field for storing the singleton instance should
be
 // declared static.
 private static field instance: Database

 // The singleton's constructor should always be private
to
 // prevent direct construction calls with the `new`
 // operator.

------- Good Luck -------

 private constructor Database() is
 // Some initialization code, such as the actual
 // connection to a database server.
 // ...

 // The static method that controls access to the
singleton
 // instance.
 public static method getInstance() is
 if (Database.instance == null) then
 acquireThreadLock() and then
 // Ensure that the instance hasn't yet been
 // initialized by another thread while this
one
 // has been waiting for the lock's release.
 if (Database.instance == null) then
 Database.instance = new Database()
 return Database.instance

 // Finally, any singleton should define some business
logic
 // which can be executed on its instance.
 public method query(sql) is
 // For instance, all database queries of an app go
 // through this method. Therefore, you can place
 // throttling or caching logic here.
 // ...

class Application is
 method main() is
 Database foo = Database.getInstance()
 foo.query("SELECT ...")
 // ...
 Database bar = Database.getInstance()
 bar.query("SELECT ...")
 // The variable `bar` will contain the same object
as
 // the variable `foo`.

Uml of Singleton design pattern

------- Good Luck -------

Q7. What is privacy pattern? Provide uml structure. (5)

Inspired by the design patterns of object-oriented software architecture, we offer an

initial set of "privacy patterns". Our intent is to describe the most important ways

in which software systems can offer privacy to their stakeholders. We express our

privacy patterns as class diagrams in the UML (Universal Modelling Language),

because this is a commonly-used language for expressing the high-level

architecture of an object-oriented system. In this initial set of privacy patterns, we

sketch how each of Westin's four states of privacy can be implemented in a

software system. In addition to Westin's states of Solitude, Intimacy, Anonymity,

and Reserve, we develop a privacy pattern for an institutionalised form of Intimacy

which we call Confidence.

UML structure

------- Good Luck -------

Q8. What is observer pattern? Provide generic uml structure and provide

example with uml structure (5)

Answer: The observer pattern is a software design pattern in which an object,

called the subject, maintains a list of its dependents, called observers, and notifies

them automatically of any state changes, usually by calling one of their methods.

It is mainly used to implement distributed event handling systems, in "event

driven" software. In those systems, the subject is usually called a "stream of

events" or "stream source of events", while the observers are called "sink of

events". The stream nomenclature simulates or adapts to a physical setup where the

observers are physically separated and have no control over the emitted events of

the subject/stream-source. This pattern then perfectly suits any process where data

arrives through I/O, that is, where data is not available to the CPU at startup, but

can arrive "randomly" (HTTP requests, GPIO data, user input from

https://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)#Objects_in_object-oriented_programming
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/Event_handling

------- Good Luck -------

keyboard/mouse/..., distributed databases and blockchains, ...). Most modern

languages have built-in "event" constructs which implement the observer pattern

components. implementations will use background threads listening for subject

events and other support mechanism from the kernel (Linux epoll, ...).

The Observer design pattern is one of the twenty-three well-known "Gang of

Four" design patterns that describe how to solve recurring design problems to

design flexible and reusable object-oriented software, that is, objects that are easier

to implement, change, test, and reuse.

A UML diagram is a diagram based on the UML (Unified Modeling Language)

with the purpose of visually representing a system along with its main actors,

roles, actions, artifacts or classes, in order to better understand, alter, maintain, or

document information about the system.

Generic UML Structure:

UML diagrams, in this case, are used to communicate different aspects and

characteristics of a system. However, this is only a top-level view of the system

and will most probably not include all the necessary details to execute the project

until the very end.

 Forward Design – The design of the sketch is done before coding the application.

This is done to get a better view of the system or workflow that you are trying to

create. Many design issues or flaws can be revealed, thus improving the overall

project health and well-being.

 Backward Design – After writing the code, the UML diagrams are drawn as a

form of documentation for the different activities, roles, actors, and workflows.

 PRACTICAL EXAMPLE

One practical adoption would be to visually represent the process flow for telesales

through an activity diagram. From the point in which an order is taken as an input,

to the point where the order is completed and a specific output is given.

Activity Diagram

Activity diagrams are probably the most important UML diagrams for

doing business process modeling. In software development, it is generally used to

describe the flow of different activities and actions. These can be both sequential

and in parallel. They describe the objects used, consumed or produced by an

activity and the relationship between the different activities. All the above are

essential in business process modeling.

https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://tallyfy.com/business-process-modeling/

------- Good Luck -------

------- Good Luck -------

