
OS paper
Section -A

MCQ’s

1) interrupt

2) Memmory related information

3) Wait

4) Asymmetric

5) ps

6) fg

7) jobs

8) Ctrl-C

9) all of these

10) usability

11) /lib

12) long term

13) do not

14) semaphore

15) spin lock

16) false

17) true

18) bounded waiting

19) Firmware based solution

20) Medium term schedular



Section – B
Q1:

Ans:

In Preemptive Shortest Job First Scheduling, jobs are put into ready queue as they arrive, but as a 
process with short burst time arrives, the existing process is preempted or removed from execution, 
and the shorter job is executed first.

 

 

As you can see in the GANTT chart above, as P1 arrives first, hence it's execution starts immediately, 
but just after 1 ms, process P2 arrives with a burst time of 3 ms which is less than the burst time of P1,
hence the process P1(1 ms done, 20 ms left) is preemptied and process P2 is executed.

As P2 is getting executed, after 1 ms, P3 arrives, but it has a burst time greater than that of P2, hence 
execution of P2 continues. But after another millisecond, P4 arrives with a burst time of 2 ms, as a 
result P2(2 ms done, 1 ms left) is preemptied and P4 is executed.

After the completion of P4, process P2 is picked up and finishes, then P2 will get executed and at last 
P1.



The Pre-emptive SJF is also known as Shortest Remaining Time First, because at any given point of 
time, the job with the shortest remaining time is executed first.

Q2:

Ans:

If a process exits, then all of its threads are terminated as well, so then it is not possible 
for them to keep running. 

Q3:

Ans:

As we know that by default threads share common code, data, and other resources. I 
think it is an advantage because it allows multiple tasks to be performed simultaneously 
in a single address space.




