Department of Electrical Engineering
 Final Exam Assignment

Date: 27/06/2020

Course Details

Course Title: Instructor:

Digital Signal Processing

| Module: | $-\quad \underline{6 t h}$ |
| :--- | :--- | :--- |
| Total Marks: | $-\quad \underline{50}$ |

Student Details

Name:
Talha Khan
Student ID: $\underline{13845}$

Q1.	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$ To the input $(n)=(-1)^{n} u(n)$. And the initial conditions are $\mathrm{y}(-1)=\mathrm{y}(-2)=0$.	$\begin{gathered} \text { Marks } \\ 7 \end{gathered}$
			CLO
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.$y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)$	$\begin{gathered} \text { Marks } \\ 7 \end{gathered}$
			CLO
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform $x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}$ (Hint: Take inverse z-transform using partial fraction method)	Marks 6
			CLO
	(b)	Evaluate the inverse z- transform using the complex inversion integral$X(z)=\frac{1}{1-a z^{-1}} \quad\|z\|>\|a\|$	Marks 6
			CLO
Q. 3	(a)	A two- pole low pass filter has the system response $H(z)=\frac{b_{o}}{\left(1-p z^{-1}\right)^{2}}$ Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the condition $\mathrm{H}(0)=1$ and $\left.\mid H_{(}^{\underline{\pi}}\right)\left.\right\|^{2}=\stackrel{1}{ }$.	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
			CLO

page (1)

Q1: (a)
Sol:- $x(n)-4 y(n-1)+4 y(n-2)$

$$
=x(n)-x(n-1)
$$

The characteristic equation is

$$
\begin{gathered}
\lambda^{2}-4 \lambda+4=0 \\
\lambda=2,2 \text { Hence, } \\
y_{n}(n)=c_{1} 2^{n}+c_{2} n 2^{n} \\
y_{p}(n)=k(-1)^{n} u(n) .
\end{gathered}
$$

difference equation we obtain

$$
\begin{aligned}
& k(-1)^{n} u(n)-4 k(-1)^{n-1} u(n-1)+4 k(-1)^{n-2} \\
& 4(n-2)=(-1)^{n} u(n)-(-1)^{n-1} u(n-1) \\
& \text { For } n=2, k(1+4+4)=2 \Rightarrow k=\frac{2}{9}
\end{aligned}
$$

The total Solution is

$$
y(n)=\left[c_{1} 2^{n}+c_{2} n 2^{n}+\frac{2}{9}(-1)^{n}\right] u(n)
$$

from the initial condition, we obtain $y(0)=1, y(1)=2$ Then,

Pase (3)

$$
\begin{gathered}
c_{1}+\frac{2}{9}=1 \\
\Rightarrow c_{1}=\frac{7}{9} \\
2 c_{1}+2 c_{2}-\frac{2}{9}=2 \\
\Rightarrow c_{2}=1 / 3 .
\end{gathered}
$$

Q1:(b)

$$
\begin{gathered}
y(n)-0.7 y(n-1)+0.1 y(n-2) \\
=2 x(n)-x(n-2)
\end{gathered}
$$

Sol:- equation is

$$
\begin{gathered}
\text { page (4) } \\
\lambda^{2}-0.7 \lambda+0.1=0 \\
\lambda=\frac{1}{2}, \frac{1}{5} \text { Hence, }
\end{gathered}
$$

$$
y_{h}(n)=c_{1} \frac{1}{2}^{n}+c_{2} \frac{1^{n}}{5}
$$

with $z(n)=\delta(n)$, we have

$$
\begin{aligned}
& y(0)=2, \\
& y(1)-0.7 y(0)=0 \Rightarrow y(1)=1.4 \\
& c_{1}+c_{2}=2 \quad \text { and } \\
& \frac{1}{2} c_{1}+\frac{1}{5}=1.4=\frac{7}{5} \\
& c_{1}+\frac{2}{5} c_{2}=\frac{14}{5}
\end{aligned}
$$

Page (5)

These eq yield

$$
\begin{aligned}
c_{1} & =\frac{10}{3}, c_{2}=\frac{-4}{3} \\
n(n) & =\left[\frac{10}{3}\left(\frac{1}{2}\right)^{n}-\frac{4}{3}\left(\frac{1}{5}\right)^{n}\right] u(n)
\end{aligned}
$$

The Step respone is

$$
\begin{aligned}
& S(n)=\sum_{k=0}^{n} n(n-k), \\
& =\frac{10}{3} \sum_{k=0}^{n}\left(\frac{1}{2}\right)^{n-k}-4 / 3 \sum_{k=0}^{n}\left(\frac{1}{5}\right)^{n-k} \\
& =\frac{10}{3}\left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} 2^{k}-\frac{4}{3}\binom{1}{5}^{n} \\
& \sum_{k=0}^{n} 5 k
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pag}(6) \\
&= \frac{10}{3}\left(\frac{1}{2}^{n}\left(2^{n+1}-1\right) u(n)-\frac{1}{3}\right. \\
& C \frac{1}{5}\left(5^{n+1}-1\right) u(n)
\end{aligned}
$$

Q 2: (a)

$$
x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}
$$

Sol:- By partial fraction methods.

$$
\begin{aligned}
& \frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}=\frac{A}{\left(1-2 z^{-1}\right)}+\frac{B}{\left(1-z^{-1}\right)}+\frac{C z^{-1}}{\left(1-z^{-1}\right)^{2}} \\
& =\frac{A\left(1-z^{-1}\right)^{2}+B\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)+\left(z^{-1}\right.}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}+\left(1-2 z^{-1)}\right.
\end{aligned}
$$

page (7)

$$
\begin{align*}
1= & A\left(1-z^{-1}\right)^{2}+B\left(1-2 z^{-1}\right)\left(1-z^{-1}\right) \\
& +C z^{-1}\left(1-2 z^{-1}\right)-(1) \tag{1}
\end{align*}
$$

put $z=1$

$$
\begin{aligned}
1=A(1-0)^{2} & +B(1-2)(1-1)+C(r)(1-2) \\
1 & =0+0-C \\
1 & =-C \\
C & =-1
\end{aligned}
$$

Put $z=2$ in eq (1)

$$
\begin{aligned}
& 1=A\left(1-\frac{1}{2}\right)^{2}+B\left(1-\frac{2}{2}\right)\left(1-\frac{1}{2}\right)+ \\
& C\left(\frac{1}{2}\right)\left(1-\frac{2}{2}\right) \\
& 1= A\left(\frac{1}{2}\right)^{4}+B(1-1)\left(\frac{1}{2}\right)+C\left(\frac{1}{2}\right)(1-1) \\
& 1= \frac{A}{4}+B(0)\left(\frac{1}{2}\right)+C\left(\frac{1}{2}\right)(0)
\end{aligned}
$$

page (8)
So, $1=A\left(\frac{1}{2}\right)^{4}+B(-1)\left(\frac{1}{2}\right)+$
e $1=\frac{A}{4}+0+0$

$$
A=4
$$

Put $z=3$ in eq (1)

$$
\begin{aligned}
& 1= A\left(1-\frac{1}{3}\right)^{2}+B\left(1-\frac{2}{3}\right)\left(1-\frac{1}{3}\right) \\
&+C\left(\frac{1}{3}\right)\left(1-\frac{2}{3}\right) \\
& 1= A\left(\frac{4}{9}\right)+B\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)+C(1 / 3)(1 / 3) \\
& 1= \frac{4}{9}+\frac{2}{9} B+\frac{1}{9} C \\
& 1= \frac{4(4)}{9}+\frac{2}{9} B-\frac{1}{9} \\
& 1+\frac{1}{9}-\frac{16}{9}=\frac{2}{9} B \quad \text { Hence } \\
& \left.-\frac{6}{9} \times \frac{9}{2}=B \right\rvert\, x(n)=\left[4(2)^{n}-3-n\right] u(n) . \\
&-3=B
\end{aligned}
$$

2: (b)
Sol:- $\quad x(z)=\frac{1}{1-a z^{-1}} \quad|z|>|a|$

Solution:- we have

$$
x(n)=\frac{1}{2 \pi j} \oint_{c} \frac{z^{n-1}}{1-a z^{-1}} d z=\frac{1}{2 \pi j} \oint_{c} \frac{z^{n} d z}{z-a}
$$

Where c is a circle at radius greater that $|a|$. We shall evaluate this integral with $f(z)=z^{n}$ we distinguish two cases.

1. If $n \geqslant 0, f(z)$ has only zeros and hence no pole inside c. The only pole inside C is $z=a$ Hence

$$
x(n)=f\left(z_{0}\right)=a^{n}, n \geqslant 0
$$

2. If $n<0, f(z)=z^{n}$ has an nth - order pole at $z=0$ which is also inside c.
Thus there are contribution from both poles for $n=-1$ we have
Page (10)

$$
\begin{aligned}
x(-1) & =\frac{1}{2 \pi j} \oint_{c} \frac{1}{z(z-a)} d z=\frac{1}{z-a} \\
\left.\right|_{z=0}+\left.\frac{1}{z}\right|_{z=a} & =0
\end{aligned}
$$

If $n=-2$, we have

$$
\begin{aligned}
& x(-2)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z^{2}(z-a)} d z=\frac{d}{d z} \\
& \left.\left(\frac{1}{z-a}\right)\right|_{z=0}+\left.\frac{1}{z^{2}}\right|_{z=a}=0
\end{aligned}
$$

By continuing in the same way we can show that $x(n)=0$
for $n<0$. Thus

$$
x(n)=a^{n} u(n)
$$

Q3: (a)
Sol:- At $\omega=0$ we have

$$
H(0)=\frac{b_{0}}{1-p^{2}}=1
$$

Hence

$$
b_{0}=(1-p)^{2}
$$

phat a simple
 high pass filter:

$$
\begin{aligned}
& H(2)=[(1-a) / 2] \\
& {\left[\left(1-2^{-1}\right),\left(1+a z^{-1}\right)\right]}
\end{aligned}
$$

$$
\text { with } a=0.9 \text {. }
$$

$$
\begin{aligned}
\text { At } \omega & =\pi / y \\
H\left(\frac{\pi}{4}\right) & =\frac{(1-p)^{2}}{\left(1-\rho e^{-j \pi / 4}\right)^{2}} \\
& =\frac{(1-p)^{2}}{(1-\rho \cos (\pi / y)+j p \sin (\pi / y))^{2}} \\
& =\frac{(1-p)^{2}}{(1-p / \sqrt{2}+j p / \sqrt{2})^{2}} \\
& \frac{(1-p)^{4}}{\left.(1-p / \sqrt{2})^{2}+p^{2} / / 2\right)^{2}}=\frac{1}{2}
\end{aligned}
$$

or. equivalently.

$$
\sqrt{2}(1-p)^{2}=1+p^{2}-\sqrt{2 p}
$$

page (13)

The value of $p=0.32$ satisfies
this equation. Consequently the system function for the desired Filter is

$$
H(z)=\frac{0.46}{\left(1-0.32 z^{-1}\right)^{2}}
$$

Q 3: (b)
Sol:- Clearly the filter must have pole at

$$
P_{1,2}=r e^{-z j \pi / 2}
$$

and zeros $z=1$ and $z=-1$. Consequently the same system function is

$$
\begin{aligned}
H(z) & =G \frac{(z-1)(z+1)}{(z-j 0)(z+j 2)} \\
& =G \frac{z^{2}-1}{z^{2}+r^{2}}
\end{aligned}
$$

The gainfactor is determined by evaluating the frequency response $H(w)$ of the filter at $\omega=\pi / 2$.

$$
\begin{aligned}
H\left(\frac{\pi}{2}\right) & =G \frac{2}{1-r^{2}}=I \\
G & =\frac{1-r^{2}}{2}
\end{aligned}
$$

The value of r is determined by evaluating $H(\omega)$ at $\omega=4 \pi / 9$.

Page (15)
Thus we have

$$
\begin{aligned}
& \begin{array}{r}
|H(4 \pi / 9)|^{2}=\frac{\left(1-r^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{1+r^{4}+2 r^{2} \cos (8 \pi / 9)} \\
\text { or. equivalently. } \\
=\frac{1}{2} \\
1.94\left(1-r^{2}\right)^{2}=1-1.88 r^{2}+r^{4}
\end{array}
\end{aligned}
$$

The value of $r^{2}=0.7$ satisfies this equation. Therefore the system function for the desired filter is

$$
H(z)=0.15 \frac{1-z^{-2}}{1+0.7 z^{-2}}
$$

Page (16)

magnitude and Phase response of a simple bandpass filter

$$
\begin{aligned}
& H(z)=0.15\left[\left(1-z^{-2}\right) /\right. \\
& \left.\left(1+0.7 z^{-2}\right)\right]
\end{aligned}
$$

Page (17)

Q 4: (a) A finite duration sequence Sol:- of Length L is given as

$$
\begin{array}{ll}
x(n)= \begin{cases}1, & 0 \leq n \leq L-1 \\
0, & \text { otherwise }\end{cases} \\
\text { the } N- &
\end{array}
$$

Determine the N - point DET of this sequence for $N \geqslant L$

Sol:- The Fourier fransform of this sequence is

$$
\begin{aligned}
x(\omega) & =\sum_{n=0}^{L-1} x(n) e^{-j \omega n} \\
& =\sum_{n=0}^{L-1} e^{-j \omega n}=\frac{1-e^{-j \omega L}}{1-e^{-j \omega}}
\end{aligned}
$$

$$
=\frac{\sin (\omega \angle 12)}{\sin (\omega / 2)} e^{-j \omega(L-1) / 2}
$$

The magnitude and phase of $x(\omega)$

$$
L=10 \text { The } N \text {-point } D F T
$$ of $x(n)$ is simply $x(w)$ evaluated at the set of N equally spaced frequencies $\omega_{k}=2 \pi \mathrm{k} / \mathrm{N}$.

$$
\begin{aligned}
K & =0,1, \ldots, N-1, \text { Hence } \\
x(k) & =\frac{1-e^{-j 2 \pi K L / N}}{1-e^{-j 2 \pi K / N}}, k=0,1, \ldots, N-1 \\
& =\frac{\sin (\pi K L / N)}{\sin (\pi K / N)} e^{-j \pi K(L-1) / N}
\end{aligned}
$$

Page (19)

magnitude and phase characteristics of the Fourier transform for signal.

Page (20)
If N is selected such that $N=L$ then the DET becomes

$$
x(k)= \begin{cases}L, & K=0 \\ 0, & K=1,2, \ldots, L-1\end{cases}
$$

Thus there is only one nozero value in the DFT. This is apparent From observation of $x(\omega)$, since $x(w)=0$ at the frequencies

$$
w_{k}=2 \pi k / L, k \neq 0 \text { The reader }
$$

should verify that $x(n)$ can be recovered from $x(k)$ by performing an L-point IDFT.

Figure provides a plot of the N-point DFT, in magnitude and

Page (21)
Phase, for $L=10, N=50$, and $N=100$.
Now the spectral Characteristics of the sequence are more clearly evident, as one will conclude by comparing these spectra with the continuous spectrum $x(\omega)$

figure magnitude and phase of an N-point $D F T$ in (a) $L=10, N=50^{\circ}$

Qu: (b) Perform the circular convolution of the following sequences:

$$
\begin{aligned}
& x_{1}(n)=\left\{\begin{array}{l}
2 \\
\uparrow
\end{array}, 1,2,1\right\} \\
& x_{2}(n)=\left\{\begin{array}{l}
1 \\
\uparrow
\end{array}, 2,3,4\right\}
\end{aligned}
$$

Page (2 2 霊)

Solution:- Thus the sequences $x_{1}(n)$ and $x_{2}(n)$ are graph as illustrated in Figs. We note that the sequence are graphed in a counter clock-wise direction on a circle. This establishes the reference direction in rotating one of the sequence relative to the other. Now $x_{3}(m)$ is obtained by circularly convolving $x_{1}(n)$ with $x_{2}(n)$.
Beginning with $m=0$ we have

$$
x_{3}(0)=\sum_{n=0}^{3} x_{1}(n) x_{2}((-n))_{N}
$$

The product sequence is obtained by multiplying $x_{1}(n)$ with $\left.x_{2}(1-n)\right)_{4}$, point by point.

Page (25)

$$
x_{3}(0)=14
$$

For $m=1$ we have

$$
x_{3}(1)=\sum_{n=0}^{3} x_{1}(n) x_{2}((1-n))_{4}
$$

It is easily verified that $x_{2}((1-n))_{y}$ is Simply the sequence $x=((-n))$ u rotate counterclock-wise by one unit in time as in fight) This rotated sequence multiplies x (n) to yield the product sequence also in fig(w) Finally we sum the values in the product sequence to obtain $x_{3}(1)$. Thus

$$
x_{3}(1)=16
$$

For $m=2$ we have

$$
x_{3}(2)=\sum_{n=0}^{3} x_{1}(n) x_{2}((2-n))_{4}
$$

Page (26)
Now $x_{2}((2-n))_{4}$ is the folded sequence in fig(ν) rotated two units of time in the counter clockwise direction.

$$
x_{2}(1)=2
$$

folded sequence
(a)

product sequence

Page (27)

(b)

Folded sequence by one unit time Product seq

(c)

Folded seq by one unit intine, product seq

Figure circular convolution of two sequence
page (28)
along with the product sequence $\left.x_{1}(n) x_{2}(12-n)\right)_{4}-B y$ summing the foul terms in the product seq we obtain

$$
x_{3}(2)=14
$$

For $m=3$ we have

$$
x_{3}(3)=\sum_{n=0}^{3} x_{1}(n) x_{2}((3-n))_{4}
$$

The sum of the values in the Product sequence is

$$
x_{3}(3)=16
$$

Page (29)
we observe that if the computa -tion above is continued beyond $m=3$, we simply repent the sequence of four values obtained above. There fore, the circular convolution of the two sequences $x_{1}(n)$ and $x_{2}(n$) yields the sequence

$$
u_{3}=\{14,16,14,16\}
$$

The two sequences may be folded and rotated without changing the result of the circular convolution. Thus

$$
x_{3}(m)=\sum_{n=0}^{n-1} x_{2}(n) x_{1}((m-n))_{N} \quad m=0,1, \ldots, N-1
$$

