# Department of Electrical Engineering Final Exam Assignment

Date: 27/06/2020

#### **Course Details**

| Course Title: | Digital Signal Processing | Module:      | 6th       |  |
|---------------|---------------------------|--------------|-----------|--|
| Instructor:   | Sir Pir Meher Ali Shah    | Total Marks: | <u>50</u> |  |

#### **Student Details**

Name: Talha Khan Student ID: 13845

|     | (a) | Determine the response $y(n)$ , $n \ge 0$ , of the system described by the second order difference equation                                                                                                | Marks<br>7 |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |     | y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)                                                                                                                                                                   | CLO        |
| 01  |     | To the input $(n) = (-1)^n u(n)$ . And the initial conditions are y $(-1) = y(-2) = 0$ .                                                                                                                   | 2          |
| Q1. | (b) | Determine the impulse response and unit step response of the systems described by the difference equation.                                                                                                 | Marks<br>7 |
|     |     | y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)                                                                                                                                                              | CLO<br>2   |
|     | (a) | Determine the causal signal x(n) having the z-transform                                                                                                                                                    | Marks<br>6 |
| Q2. | (a) | $x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$                                                                                                                                                             | CLO<br>2   |
|     |     | (Hint: Take inverse z-transform using partial fraction method)                                                                                                                                             |            |
|     | (b) | Evaluate the inverse z- transform using the complex inversion integral                                                                                                                                     | Marks<br>6 |
|     |     | $X(z) = \frac{1}{1 - az^{-1}} \qquad  z  >  a $                                                                                                                                                            | CLO<br>2   |
| Q.3 | (a) | A two- pole low pass filter has the system response $b_0$                                                                                                                                                  | Marks<br>6 |
| Q.3 | (u) | $H(z) = \frac{b_o}{(1 - pz^{-1})^2}$ Determine the values of b <sub>o</sub> and p such that the frequency response H( $\omega$ ) satisfies the condition H(0) = 1 and $ H_{\ell}^{\pi} ^2 = \frac{1}{2}$ . | CLO<br>3   |

|     | (b) | Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$ , zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$ . |               |  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|     | (a) | A finite duration sequence of Length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$                                                                                                                          | Marks 6 CLO 2 |  |
| Q 4 |     | Determine the N- point DFT of this sequence for $N \ge L$                                                                                                                                                                                               |               |  |
| ¥ . | (b) | Perform the circular convolution of the following two sequences. Solve the problem step by step                                                                                                                                                         | Marks<br>6    |  |
|     |     | $x_{1}(n) = \{ 1, 2, 1 \}$ $x_{2}(n) = \{ 1, 2, 3, 4 \}$                                                                                                                                                                                                | CLO<br>2      |  |

#### Page (1)

Q1: (a)

Sol = Y(n) - 4y(n-1) + 4y(n-2)= x(n) - x(n-1)

The characteristic equation is

 $\lambda^2 - 4x + 4 = 0$ 

 $\lambda = 2,2$  Hence,

Yh(h)= C,2h+Czn2h

JP(n)=K(-1)nu(n).

difference equation we obtain

#### Page (2)

$$K(-1)^{n}u(n)-y_{k}(-1)^{n-1}u(n-1)+y_{k}(-1)^{n-2}y_{k}(-1)^{n-1}u(n-1)+y_{k}(-1)^{n-2}y_{k}(n-1)-y_{k}(n-1)-y_{k}(n-1)$$

For  $n=2$ ,  $k$   $(1+y+y)=2$  =>  $k=\frac{2}{9}$ 

The total Solution is

$$y(n) = \left[ c_1 2^n + c_2 n 2^n + \frac{2}{9} (-1)^n \right] u(n)$$
from the initial condition, we obtain  $y(0) = 1$ ,  $y(1) = 2$  Then,

$$C_1 + \frac{2}{9} = 1$$

$$\Rightarrow C_1 = \frac{7}{9}$$

$$\Rightarrow C_2 = \frac{1}{3}$$

$$y(n) - o \cdot 7y(n-1) + o \cdot 1y(n-2)$$
  
=  $2\pi(n) - \pi(n-2)$ 

Sol: - equation is

with 
$$z(n) = 8(n)$$
, we have 
$$z(n) = 8(n)$$
, we have

$$CI+Cz=2$$
 and

$$\frac{1}{5}c_1 + \frac{1}{5} = 1.04 = \frac{7}{5}$$

$$c_1 + \frac{2}{5}c_2 = \frac{14}{5}$$

$$C_1 = \frac{10}{3}, C_2 = -\frac{4}{3}.$$

$$h(n) = \left[\frac{10}{3} \left(\frac{1}{3}\right)^n - \frac{4}{3} \left(\frac{1}{5}\right)^n\right] u(n)$$

The Step respone is

$$S(n) = \sum_{k=0}^{n} h(n-k),$$

$$=\frac{10}{3}\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{n-k}+\frac{4}{3}\sum_{k=0}^{n}\left(\frac{1}{5}\right)^{n-k}$$

$$= \frac{10}{3} (\frac{1}{2})^{n} \sum_{k=0}^{n} 2^{k} - \frac{4}{3} (\frac{1}{5})^{n}$$

$$\sum_{k=0}^{n} 2^{k} - \frac{4}{3} (\frac{1}{5})^{n}$$

$$= \frac{10}{3} \left( \frac{1}{3}^{n} (2^{n+1} - 1) u(n) - \frac{1}{3} \right)$$

$$= \frac{10}{3} \left( \frac{1}{3}^{n} (2^{n+1} - 1) u(n) - \frac{1}{3} \right)$$

$$\chi(z) = \frac{1}{(1-2z^{-1})^2}$$

Sol:- By Partial Fraction methods.

$$\frac{1}{(1-2z^{-1})(1-z^{-1})^{2}} = \frac{A}{(1-2z^{-1})} + \frac{B}{(1-2z^{-1})} + \frac{Cz^{-1}}{(1-z^{-1})^{2}}$$

$$= A (1-z^{-1})^{2} + B (1-2z^{-1})(1-z^{-1}) + Cz^{-1}$$

$$= \frac{A(1-2z^{-1})^{2}}{(1-2z^{-1})(1-z^{-1})^{2}}$$

So, 
$$1 = A(\frac{1}{3})^{\frac{1}{2}} + B(1-1)(\frac{1}{3}) + \frac{1}{4}$$

$$e = 1 = \frac{A}{4} + 0 + 0$$

$$A = 4$$

$$1 = A \left( \frac{1 - \frac{1}{3}}{3} \right)^{2} + B \left( \frac{1 - \frac{2}{3}}{3} \right) \left( \frac{1 - \frac{1}{3}}{3} \right)$$

$$+ C \left( \frac{1}{3} \right) \left( \frac{1 - \frac{2}{3}}{3} \right)$$

$$1 = A\left(\frac{4}{9}\right) + B\left(\frac{4}{3}\right)\left(\frac{2}{3}\right) + C\left(\frac{4}{3}\right)\left(\frac{4}{3}\right)$$

$$1 = \frac{4A}{9} + \frac{2}{9}B + \frac{1}{9}C$$

$$1 = \frac{4(u)}{9} + \frac{2}{9}B - \frac{4}{9}$$

$$1+\frac{1}{9}-\frac{16}{9}=\frac{2}{9}B$$

$$-\frac{6}{9} \times \frac{9}{2} = B$$

$$-\frac{6}{9} \times \frac{9}{2} = B / \chi(n) = [Y(2)^{n} - 3 - n] u(n).$$

### Page (9)

Q 2; (b)

$$Sol:- x(z) = \frac{1}{1-az^{-1}} |z| > |a|$$

Solution: whe we have

$$\pi(n) = \frac{1}{2\pi i} \oint_{C} \frac{z^{n-1}}{1 - az^{-1}} dz = \frac{1}{2\pi i} \oint_{C} \frac{z^{n} dz}{z - a}$$

where c is a circle at radius greater that IaI. we shall evaluate this integral with  $f(z) = z^n$  we distingusish two cases.

1. If n70, f(z) has only zeros and hence no pole inside C. The only pole inside Cis z=a Hence

$$\chi(n) = f(z_0) = q^n, n > 0$$

2. If  $n \ge 0$ ,  $f(x) = z^n$  has an nth - order pole at z = 0 which is also inside c.

Thus there are contribution from both poles For n = -1 we have

$$\chi(-1) = \frac{1}{2\pi i} \oint_C \frac{1}{z(z-a)} dz = \frac{1}{z-a}$$

$$\left|_{z=0}\right. + \frac{1}{z} \left|_{z=q}\right. = 0$$

$$\pi(-2) = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{1}{z^2(z-a)} dz = \frac{d}{dz}$$

$$\left(\begin{array}{c|c} \frac{1}{z-a} \end{array}\right) \Big|_{z=0} + \frac{1}{z^2} \Big|_{z=a} = 0$$

Bx continuing in the Same way

we can Show that n(n)=0

for nco. Thus

$$n(n) = q^n u(n)$$

$$H(0) = \frac{b_0}{1 - \rho^2} = 1$$

Hence





Magnitude and
Phase a simple
high Pass filter:
H(z)=[(1-a)/2]
[(1-z')/(1+az')]
with a=0.9.

### Page (12)

$$H\left(\frac{\pi}{4}\right) = \frac{\left(1-P\right)^{2}}{\left(1-Pe^{-j\pi/4}\right)^{2}}$$

$$= \frac{(1-P)^2}{(1-P\cos(\pi/y)+jP\sin(\pi/y))^2}$$

Hence

$$= \frac{(1-P)^2}{(1-P/\sqrt{2}+JP/\sqrt{2})^2}$$

$$\frac{(1-P)^{4}}{(1-P/\sqrt{2})^{2}+P^{4}\sqrt{2})^{2}}=\frac{1}{2}$$

or . equivalently.

# Page (13)

The value of p=0.32 Satisfies this equation. Consequently the System function for the desired filter is

@ 3: (b)

Sol:- & Clearly the filter must have pole at

and zeros z=1 and z=-1. Consequently the same System function is

$$H(z) = G(z-1)(z+1)$$
 $(z-j_0)(z+j_1)$ 

$$=G \frac{Z^2-1}{Z^2+1^2}$$

The gain factor is determined by evaluating the frequency response  $H(\omega)$  of the filter at  $\omega=\pi/2$ .

$$H(Z) = G \frac{2}{1-r^2} = I$$

$$G = \frac{1-r^2}{2}$$

The value of  $\gamma$  is determined by evaluating  $H(\omega)$  at  $\omega = 4\pi/9$ .

# Page (15)

Thus we have

$$\left| H \left( \frac{4\pi}{9} \right) \right|^{2} = \frac{(1-r^{2})^{2}}{4} \frac{2-2\cos(8\pi/9)}{1+r^{4}+2r^{2}\cos(8\pi/9)}$$
or. equivalent

or. equivalently,

$$1.94(1-8^2)^2=1-1.88x^2+x^4$$

The value of Y= 0.7 Satisfies this Equation . Therefore the system function for the desired filter is

## Page (16)



magnitude and

phase response
of a simple

boundpass filter

H(z)=015(1-z-2)/

(1+0.7z-2)7

# Page (17)

Q 4: (a) A finite duration sequence Sol: of Length Lis given as

 $\mathcal{H}(n) = \begin{bmatrix} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{bmatrix}$ Determine the N-Point DET of this

sequence ofor N > L

Sol: The Fourier Fransform of this sequence

 $X(w) = \sum_{i=1}^{k-1} \pi(n)e^{-jwn}$ 

 $= \sum_{n=0}^{L-1} e^{-jwn} = \frac{1 - e^{-jnL}}{1 - e^{-jw}}$ 

# Page (18)

The magnitude and phase of x(w) are issues L=10 The N-point DFT of n(n) is simply x(w) evaluated at the Set of N equally spaced frequencies  $w_k = 2\pi k/N$ , k=0.1,...,N-1, Hence

$$\chi(k) = \frac{1 - e^{-j2\pi kL/N}}{1 - e^{-j2\pi k/N}}, \quad k=0.1,...,N-1$$

 $= \frac{Sin(\pi K L IN)}{Sin(\pi K IN)} e^{-j\pi K(L-I)IN}$ 



magnitude and phase characteristics of the Fourier transform for signal.

## Page (20)

If N is selected such that N=L then the DET becomes

$$X(K) = \begin{cases} L, & K=0 \\ 0, & K=1,2,...,L-1 \end{cases}$$

Thus there is only one nozero value in the DFT oThis is apparent from observation of x (w), since x(w) = 0 at the frequencies

WH = 2 TK/L, K = 0 The reader

Showd verify that n(n) can be recovered from x(k) by Performing an L-Point IDFT.

Figure Provides a plot of the N-point DFT, in magnitude and

## Page (21)

Phase, for L= 10, N=50, and N=100.

Now the Spectral Characteristics

of the sequence are more clearly

evident, as one will conclude by

comparing these spectra with the

continuous spectrum X(w)



# Page (22)



Figure Magnitude and Phase of an N-point DFT in (a) L=10, N=50; |x(ax)| L=10, N=100







Q 4: (b) Perform the Circular convolution of the following Sequences:

$$M, (n) = \{ \frac{2}{1}, 1, 2, 1 \}$$

# Page (2)

Solution; Thus the sequences

min) and min) are graph each
as illustrated in Fig., we note
that the sequence are graphed in
a counter (lock-wise direction on a
circle This establishes the reference
in direction in rotating one of the
Sequence relative to the other.

Now mis(m) is obtained by circularly
convolving mi(n) with mill).

Beginning with m=0 we have

$$n_3(0) = \sum_{n=0}^{3} n_1(n) n_2(-n) N$$

The product sequence is obtained by multiplying x1(n) with x2 (+n))4, Point by Point.

# Page (25)

For m=1 we have

$$n_3(1) = \sum_{n=0}^{3} n_1(n) n_2((1-n)) y$$

Ft is easily verified that  $\pi_{\Sigma}((1-n))y$  is simply the sequence  $\pi_{\Sigma}((-n))y$  rotate counterclock-wise by one unit in time as in fig. This rotated sequence multiplies  $\pi_{I}(n)$  to yield the product sequence of one of  $\pi_{I}(n)$  to yield the product sequence sum the values in the product sequence to obtain  $\pi_{I}(1)$ . Thus

For m= 2 we have

$$n_3(a) = \sum_{n=0}^3 n_1(n) n_2 ((a-n))_4$$

#### Page (26)

Now  $\mathcal{H}_{1}((\partial-n))_{y}$  is the folded sequence in fig(x) rotated two units of time in the counterclockwise direction.



Folded Sequence

Product Sequence



### Page (28)

along with the product sequence xi(n) xz (12-n))4 - By Summing the four terms in the Product seq we obtain

2/3(2)=14

For m=3 we have

 $u_3(3) = \sum_{n=0}^{3} u_i(n) u_i((3-n))_4$ 

The sum of the values in the Product is Sequence is

263 (3)=16

## Page (29)

tion above is continued beyond m=3, we simply repeat the Sequence of four values obtained above. There fore, the circular convolution of the two sequences sequences sequences

N3 = { 14, 16, 14, 16}

The two sequences may be folded and rotated without changing the result of the circular convolution. Thus

 $\chi_3(m) = \sum_{n=0}^{n-1} \chi_2(n) \chi_1((m-n))_N \quad m=0, 1, ..., N-1$