

DIGITAL LOGIC DESIGN

Full Adder
Sir. Muhammad Amin
LAB\# 3

HASSAN MEHDI
LAB\# 3

Full Adder

AIM:

Design and verify the logic circuit of Half-subtractor using logic gate.

Objectives:

- To understand the principle of binary addition.
- To understand full adder concept.
- Use truth table and Boolean Algebra theorems in simplifying a circuit design.
- To implement full adder circuit using logic gates.

Procedure:

- Collect the components necessary to accomplish this experiment.
- Plug the IC chip into the breadboard
- Connect the supply voltage and ground lines to the chips. PIN7 = Ground and PIN14 $=+5 \mathrm{~V}$.
- According to the pin diagram of each IC mentioned above, make the connections according to circuit diagram.
- Connect the inputs of the gate to the input switches of the LED.
- Connect the output of the gate to the output LEDs.
- Once all connections have been done, turn on the power switch of the breadboard
- Operate the switches and fill in the truth table (Write " 1 " if LED is ON and " 0 " if LED is OFF.
- Apply the various combination of inputs according to the truth table and observe the condition of Output LEDs.

Full Adder:

Full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own.

Observation Table:

A	B	Carry-in	Sum (S)	Carry-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1

Results And AnAlysis:

Verified the truth table as follows.
Full Adder: Verified the truth table of Full Adder as $\mathrm{S}=1$ i.e. LED which is connected to S terminal glows when inputs are $A, B, C i V e r i f i e d ~ t h e ~ t r u t h ~$ table of Full Adder as $C o=1$ i.e. LED which is connected to Co terminal glows when inputs are $A, B, C o$.

CONCLUSION:

- To add two bits, we require one XOR gate (IC 7486) to generate Sum and one AND (IC 7408) to generate carry.
- To add three bits, we require two half adders.

