Electrical Transmission System Sessional Assignment
Total Marks=20
Question No 1: A 3-phase, 50-Hz overhead transmission line 100 km long has the following constants:

Resistance/km/phase $=0.1 \Omega$
Inductive reactance/km/phase $=0.2 \Omega$
Capacitive Susceptance $/ \mathrm{km} /$ phase $=0.04 \times 10-4$
siemen
Determine (i) the sending end current (ii) sending end voltage (iii) sending end power factor and (iv) transmission efficiency when supplying a balanced load of $10,000 \mathrm{~kW}$ at 66 kV , p.f. $0 \cdot 8$ lagging. Use nominal T method.

Question No 2: A (medium) single phase transmission line 100 km long has the following constants:

Resistance/km = 0.25 Ω; Reactance/km = 0.8Ω
Susceptance/km = $14 \times 10-6$ siemen; Receiving end line voltage $=66,000 \mathrm{~V}$
Assuming that the total capacitance of the line is localised at the receiving end alone, determine
(i) The sending end current (ii) The sending end voltage (iii) Regulation and (iv) supply power factor. The line is delivering $15,000 \mathrm{~kW}$ at 0.8 power factor lagging.

Draw the phasor diagram to illustrate your calculations.

Question No 3: Describe Ferranti Effect, Why Ferranti effect occurs? Detail
 explanation of the Ferranti effect by considering a nominal pi (π) model. How toreduce Ferranti effect.

SOLUTION:1

Total resistance/phase $=0.1 \times 100=10$
Ω Total reactance/phase.XL $=0.2 \times 100=20$

Capacitive susceptance, $Y=0.04 \times 10-4 \times 100=4 \times 10-4 \mathrm{~S}$
Receiving end voltage/phase, VR=66,000/V $3=38105 \mathrm{~V}$
Load current, IR =
10000×103
,
V3 $\times 66 \times 103 \times 0.8$
$=109 \mathrm{~A}$
$\cos R=0 \cdot 8 ; \sin R=0 \cdot 6$
Impedance per phase, $\mathrm{Z}=\mathrm{R}+\mathrm{j}$ XL= $10+\mathrm{j} 20$
(i) Taking receiving end voltage as the reference phase

We have,
Receiving end voltage, $\mathrm{VR}=\mathrm{VR}+\mathrm{j} 0=38,105 \mathrm{~V}$
Load current, $I R=I R(\cos$ R-j \sin R $)=109(0 \cdot 8-j 0 \cdot 6)=87 \cdot 2-j 65 \cdot 4$
Voltage across C, V1 = Vr +Ir Z/2 = 38, $105+(87 \cdot 2-\mathrm{j} 65 \cdot 4)(5+j 10)=38,105+436$
$+\mathrm{j} 872-\mathrm{j} 327+654=39,195+\mathrm{j} 545$

Charging current， $\mathrm{IC}=\mathrm{j} Y$ 回 $14 \times 10-4$
（ $39,195+\mathrm{j} 545$ ）$-0.218+\mathrm{j} 15.6$

$=87 \cdot 0$＠ $49 \cdot 8=100$ 九 29음．A
Sending end current＝100A
（ii）Sending end voltage， $\mathrm{VS}=\mathrm{V} 1+I s \mathrm{Z} / 2=(39,195+\mathrm{j} 545)+(87 \cdot 0$＠ $\mathrm{j} 49 \cdot 8)$
（5＋j 10）
$=39,195+\mathrm{j} 545+434 \cdot 9+\mathrm{j} 870$＠ $249+498$
$=40128+\mathrm{j} 1170=40145<1^{\circ} 40$ 回 V
［T］Line value of sending end voltage
$=40145$ 目 3 ＝ $69533 \mathrm{~V}=69.53 \mathrm{KV}$
（iii）Referring to phases＝
, $1=$ angle between $V r$ and $V s=1^{\circ} 40$ 무
$\theta 2=$ angle between $V r$ and $I s=29^{\circ} 47$ 国
$\theta \mathrm{S}=$ angle between VsandIs
$=\theta 1+\theta 2=1^{\circ} 40$ 回 $+29^{\circ} 47$ 回 $=31^{\circ} 27$ 回
Sending end power $=\cos \theta \mathrm{s}=\cos 31^{\circ} 27=0.853 \mathrm{lag}$
（iv）Sending end power $=3 \mathrm{Vs}$
Is $\cos \theta \mathrm{s}=3.40,145 \times 100 \times 0.853$
$=10273105 \mathrm{~W}=10273.105 \mathrm{KW}$
Power delivered $=10,000 \mathrm{KW}$
：．Transmission efficiency＝
10，000
10273.105
$\times 100=97.34 \%$

SOLUTION 2

Total resistance, $\mathrm{R}=0.2 \times 100=25 \mathrm{ohms}$
Total reactance, $X l$
$=0.8 \times 100=80$ ohms
Total susceptance, $Y=14 \times 10-6 \times 100-14 \times 10-4 S$
Receiving end voltage, $V R=66,000 \mathrm{~V}$
:. Load current $I R=$
15000×103
$66,000 \times 0.8$
$=284 \mathrm{~A}$
$\cos \theta R=0.8: \sin \theta R=0.6$
Taking receiving end voltage as the reference phasor we have,
$V R=V R+\mathrm{J} 0=66,000 \mathrm{~V}$
Load current $I R=I R(\operatorname{Cos} \theta R-j \sin \theta R)-284(0.8-\mathrm{j} 0.6)-27-j 170$
Capacitive current $I c=\mathrm{j} Y \times V R=-\mathrm{j} 14 \times 10-4 \times 66000-\mathrm{j} 92$
(i) Sending end current, $I S=I R+I C=(227-\mathrm{j} 170+\mathrm{j} 92$
$=227-j 78$
Magnitude of $I S=\vee(227)$
$2+(78)$
$2=240 A$
(II) Voltage drop $=I S Z=I S$
($\mathrm{R}+\mathrm{j} X L$
$)=(227-j 78)(25+j 80)$
$=5.675+j 1816-j 1950+6240$
11,915+j16210
Sending end voltage, $V S=V R+I S Z=66000+11915+j 16210$
= 77915 =+j16210
Magnitude of $V S=V(77915)$
$2+(16210)$
$2=79583 \mathrm{~V}$
(III) \% voltage regulation $=V S-V R$
$V R$
$\times 100=$
79583-66000
66000
$\times 100=20.58 \%$
(IV) referreing to $\exp (\mathrm{i})$, phase angle between VRandIR is :
$\theta 1=\tan -1$

- 78/227-tan-1
$(-0.3436)=-18.96^{\circ}$
Referring to exp (ii), phase angle between $V R$ and $V S$
is;
$\theta 1=\tan -1$
16210
77915
$=\tan -1$
$(0.236)=11.50^{\circ}$

Supply power factor angle, \varnothing S $=18.96^{\circ}+11.50^{\circ}=30.46^{\circ}$
Supply p.f $=\cos \varnothing$ S
$-\cos 30.46^{\circ}=0.86$ lag

ANSWER NO 3

Ferranti Effec:
Definition: The effect in which the voltage at the receiving end of the transmission
line is more than the sending voltage is known as the Ferranti effect. Such type of effect mainly
occurs because of light load or open circuit at the receiving end.

Ferranti effect occurs:

Capacitance and inductance are the main parameters of the lines having a length 240km or above.

On such transmission lines, the capacitance is not concentrated at some definite points. It is
distributed uniformly along the whole length of the line.
When the voltage is applied at the sending end, the current drawn by the capacitance of the line is
more than current associated with the load. Thus, at no load or light load, the voltage at the
receiving end is quite large as compared to the constant voltage at the sending end

Ferranti effect by considering a nominal pi (π) model:

Let us consider the long transmission line in which OE represents the receiving end voltage; OH represents the current through the capacitor at the receiving end. The
phasor FE represents the voltage drop across the resistance R. The voltage drop across the X
(inductance). The phasor OG represents the sending end voltage under a noload condition.

It is seen from phasor diagram that OE > OG. In other words, the voltage at the receiving end is
greater than the voltage at the sending end when the line is at no load.
For a small Pi (π) replica
$\mathrm{Vs}=(1+Z Y / 2) \mathrm{Vr}+\mathrm{ZIr}$
Where, Ir =0 at no load condition

$$
\begin{aligned}
& V s=(1+Z Y / 2) V r+Z(0) \\
& =(1+Z Y / 2) \mathrm{Vr} \\
& V s-V r=(1+Z Y / 2) V r-V r \\
& V s-V r=V r[1+Z Y / 2-1] \\
& V s-V r=(Z Y / 2) V r \\
& Z=(r+j w l) S, \text { and } Y=(j w c) S
\end{aligned}
$$

If the transmission line's resistance is unnoticed
Vs-Vr $=(Z Y / 2) \mathrm{Vr}$
Substitute $Z=(r+j w l) S$, and $Y=(j w c) S$ in the above Vs
Vs-Vr= $1 / 2$ (jwls) (jwcs) Vr
Vs-Vr=-1⁄2 (W2S2) IcVr
For the lines of overhead, $1 / \mathrm{VLC}=3 \times 108 \mathrm{~m} / \mathrm{s}$ (velocity of electromagnetic wave transmission on
the broadcast lines). $1 / \mathrm{VLC}=3 \times 108 \mathrm{~m} / \mathrm{s}$
VLC $=1 / 3 \times 108$

LC $=1 /(3 \times 108) \mathbf{2}$
VS-VR = - ½ W2S2 . (1/(3×108)2) Vr
$\mathbf{W}=\mathbf{2 \pi f}$
VS-VR $=-((4 \pi 2 / 18) * 10-16) f 2 S 2 V r$
The above eq illustrates that (VS-Vr) is negative, that means Vr is greater than VS. This is also
illustrated that this effect will also determine by the electrical period of the transmission lines and
frequency.
Generally, for each line
Vs $=A V r+B L r$
On no load state,
$\mathrm{Ir}=\mathbf{0}, \mathrm{Vr}=\mathrm{VrnI}$
Vs $=$ AVrnl
|VrnI| = |Vs|/|A

How to Reduce Ferranti Effect In Transmission Line:

Electrical machines work on specific electrical energy. If the voltage is far above the ground at the
consumer end their device get damaged, and the windings of the device also burn due to high
electrical energy.
Ferranti effect on extensive transmission lines at no-load status, then the voltage will increase at the
collecting end. This can be restricted by keeping the shunt-reactors next to the collecting end of the
transmission lines.
This reactor allied between the lines along with neutral to give back the capacitive current as of
transmission lines. As this outcome happens in lengthy transmission lines, these reactors pay off
the transmission lines $\&$ thus the voltage is regulated within the set limits.

