## Course Details

## Course Title: Instructor:

Numerical Analysis
Muhammad Waqas
$\qquad$

## Module:

Total Marks: $\qquad$

## Student Details

## Name:

Saad Bin Tariq
Student ID:
5534

| Q1. | (a) | Find the root of the equation given below by Bisection method, accuracy must be up to three decimal places $x^{3}-x^{2}+x-7=0$ | $\begin{array}{\|c\|} \hline \text { Marks } 10 \\ \hline \text { CLO } 1 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
| Q2. | (a) | Use Regula-Falsi method to compute the root of the following equation in the interval $[0,1]$ after third iteration. $f(x)=\cos x-x e^{x}$ | Marks 07 |
|  | (b) | Use Regula-Falsi (method of false position) to solve the following equation, accuracy must be up to four decimal places. | Marks 07 |
| Q3. | (a) | Find the real root of the following equation using Newton-Raphson method in the interval [2,3] after third iteration. $x^{3}-3 x-5=0$ | Marks 08 |
|  | (b) | Solve the following equation by using Muller's method, only perform three iterations. ( $\mathrm{x}_{0}=0.5, \mathrm{x}_{1}=$ $1, \mathrm{x}_{2}=0$ ) $x^{3}-7 x^{2}+14 x-6$ | Marks 08 |
| Q4. | (a) | Using Gaussian Elimination method, solve the following system of equations $\begin{gathered} 2 x-y+2 z=2 \\ x+10 y-3 z=5 \\ x-y-z=3 \end{gathered}$ | Marks 10 |



## Student Name: Saad Bin Tariq

ID: 5534
Department: BE(E)
Subject: Numerical Analysis
Teacher : Sir Muhammad Waqas

Sano Buntaria 105534
Pano\# 1
Quection ino - 1
Find the root of the equation gum Wit be uypo thre decimals alcurces

$$
x^{3}-x^{2}+x-7=0
$$

Scution:-

$$
f(x)=x^{2}-x^{2}+x-7=0
$$

$\frac{\text { sree \#1 }}{\text { Arrume }}$ Limit

$$
\begin{aligned}
f(1) & =(1)^{3}-(2)^{2}+(1)-7=0 \\
& =1-1+1=7 \\
& =-6 \\
f(2) & =(2)^{3}-(2)^{2}+(2)-7 \\
& =8-4+2-7 \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
f(3) & =(3)^{3}-(3)^{2}+3-7 \\
& =27-9+3-7 \\
& =14
\end{aligned}
$$

$$
[2,3]=F(2) \times f(3)
$$

Shas Bivtanca ID5534 OgHNO 2

$$
\begin{aligned}
& =(-1)(14) \\
& =-14<0 \\
& C=\frac{2+3}{2} \\
& =\frac{5}{2} \\
& =2.5 \\
& \text { Gree \# 3: } \\
& \text { Nito Polvinis } \\
& \text { C. } \frac{2+3}{2} \\
& =\frac{5}{2} \\
& =2.5 \\
& f(2 \cdot 5)=(2 \cdot 5)^{3}-(2 \cdot 5)^{2}+2 \cdot 5-7 \\
& =4.875 \\
& f(2) \times f(2.5)=(-1) \times(4.8 .75) \\
& =-4.875<0
\end{aligned}
$$

Shas ben taria ID SS34 Pg\#no3
Lre \# B
Mos Pornt.

$$
\begin{aligned}
& C=\frac{2+2.5}{2} \\
&=\frac{4.5}{2} \\
&=2.5=2.25 \\
& F(2.25)=(2.25)^{3}-(2.25)^{2}+(2.25)-7 \\
&=1.5181 \\
& f(2) \times f(2.25)=(-1 \times 1.5781) \\
&=(-1.5781)<0
\end{aligned}
$$

STEP \# 4
MID POINT:

$$
\begin{aligned}
C & =\frac{2 \cdot 25}{2} \\
& =2 \cdot 125 \\
f(2 \cdot 125) & =(2 \cdot 125)^{3}-(2 \cdot 125)^{2}+(2 \cdot 0625)-7 \\
& =-0.4177
\end{aligned}
$$

SAAD BIN TARIQ to 5534 PInot 4 $f(2) \times f(\theta$.

$$
\begin{aligned}
& f(2) \times f(2.0625)=(1) \times(0.4177) \\
& =+0.4177>0
\end{aligned}
$$

Root of the equation. lies in limit

$$
\frac{(2,2 \cdot 125) \text { ie }}{0.20507}
$$

Samobintaria Io 5534 Pgno\#5 Question No:- 2
Dost A:-
Use Requla - Falsi method to Compute the root of the following equation in the interval $(0,1)^{0}$ after third iteration.

$$
f(x)=\cos x-x e^{x}
$$

Solution:-

$$
\begin{aligned}
& \text { VOLUTION: } f(x)=\cos x-8 x e^{x} \\
& {[0,1]=} \\
& f(0)=\cos (0)-\cos e^{0} \\
& =1-0 \\
& =1 \\
& f(1)=\cos (1)-(1) e^{T} \\
& =0.999-2.7182 \\
& =-1.7192
\end{aligned}
$$

Here $a=0$ $b=1$

$$
f(a)=1 \quad f(b)=-1.7192
$$

SAAD BINTARIQ ID:5534 PिNoHG Formula:-

$$
\begin{aligned}
& \text { ORMULA:: } \frac{a f(a)-b f(b)}{f(b)-f(a)} \\
& =\frac{0(1)-(1)(-1.71992)}{-1.7192-1} \\
& =+\frac{1.7192}{-2.7192} \\
& =-0.6322
\end{aligned}
$$

$$
f(-0.6322)=\cos (-0.63 .22)-(0.6322)
$$

$$
=0.9999-(-0.6322)(0.5314)
$$

$$
=0.9999+0.3359
$$

$$
=1.3358
$$

STEP 2:-

$$
\begin{array}{rl}
a=-0.6322 & b=1 \\
f(a)=1.3358 & f(b)=-1.7192
\end{array}
$$

Formula:-

$$
\begin{aligned}
& =\frac{a f(a)-b f(b)}{f(b)-f(a)} \\
& =\frac{-0.6322(1.3358)-a)(-1.7192)}{-1.7192-1.3358}
\end{aligned}
$$

SaAD bin tarta Io:5534 Ig No\# 7

$$
\begin{aligned}
&=\frac{-0.8444+1.7192}{3.055} \\
&=\frac{2.5636}{-3.055} \\
&=-0.839 \\
& f(-0.8391)=\cos (-0.8391)-(-0.8391) \\
&=0.9998-(-0.8391)(0.4320) \\
&=0.9998+0.3625 \\
&=1.3623
\end{aligned}
$$

STEP:-

$$
\begin{aligned}
& \text { UTEP:- } \\
& a=-0.83912 \quad b=1 \\
& f(a)=1.3623 \quad f(b)=-1.7192 \\
& =\frac{-0.8391(1.3623)-(1)(-1.7192)}{-1.7192-1.3623} \\
& =\frac{1.1431+1.7192}{3.0815} \\
& =\frac{2.862}{3.0815} \\
& =0.9287 \times m s:
\end{aligned}
$$

SAAD Bin Tarsia ID: 5534 Pgno $\# 8$ Question No: -
Port (B)
Use Regula - Falsi (method of false position) to solve the following equation, accuracy must be up to four decimal places

$$
x^{3}-4 x-9=0
$$

Solution:-

$$
\begin{gathered}
\text { Solution: } f(x)=\left(x^{3}-4 x-9\right. \\
f(0)=(0)^{3}-4(0)-9 \\
=-9
\end{gathered}
$$

$$
\begin{aligned}
f(1) & =(1)^{3}-4(1)-9 \\
& =1-4-9 \\
& =-12 \\
f(2) & =(2)^{3}-4(2)-9 \\
& =8-8-9 \\
& =-9 \text { (negative) }
\end{aligned}
$$

$$
\begin{aligned}
f(3) & =(3)^{3}-4(3)-9 \\
& =27-12-9
\end{aligned}
$$

SAAO BIn TARIQ ID 5534 PgNohta
$=6$ (Positive)
Root lies b/w $[2,3]$
First Approx:-

$$
a=2 \quad, b=3
$$

Using formula:-

$$
\begin{aligned}
x_{1} & =\frac{a f(a)-b f(b)}{f(b)-f(a)} \\
& =\frac{2 f(2)-3 f(3)}{f(3)-f(2)} \\
& =\frac{2(-9)-3(6)}{6-(-9)} \\
& =\frac{-36}{-15} \\
& =-2.4 \\
f(-2.4) & =(-2.4)^{3}-4(-2.4)-9 \\
& =-5.76-(-9.6)-9 \\
& =-5.16
\end{aligned}
$$

2 Sinobintanior io 5534 Pgnotio hoot lies b/w $f(-2 \cdot 4)$ and $f(3)$

$$
\begin{aligned}
& a=(-2 \cdot 4) \quad b=3 \\
& f(-2 \cdot 4)-5 \cdot 16 \quad f(3)=6 \\
& \frac{a f(a)-b f(b)}{f(b)-f(a)} \\
& =\frac{(-2 \cdot 4)(-5 \cdot 16)-(3)(6)}{6-(-2 \cdot 4)} \\
& =\frac{12 \cdot 384-18}{6+2 \cdot 4} \\
& =\frac{-5.016}{8 \cdot 4} \\
& =-0.5971 \\
& f(-0.5971)=(-0.5971)^{3}-4(-0.5971)-9 \\
& =0.59 \\
& =-0 \cdot 2128-(-2 \cdot 284)-9 \\
& =-6.9288
\end{aligned}
$$

Roots lies b/w $(-0.5971,3)$

$$
a=-0.5971 \quad b=3
$$

SAAD Bin Taria ID $5534 \quad$ PanoHll

$$
\begin{aligned}
& f(a)=-6.9288 \quad f(b)=6 \\
= & \frac{0.5971(-6.9288)-3(6)}{6-(-6.9288)} \\
= & \frac{4.1371-18}{12.1288} \\
= & 2.7448 \quad \text { Ans:- }
\end{aligned}
$$

a Bono Benteriod Io: 5534 Pgnotel2 Qnar Question No: 3
$\frac{\text { Diet (A) }}{\text { Fin }}$
Find the real root of the following equation using Newton - Raphson method in the interval $(2,3)$ after third iteration

$$
x^{3}-3 x-5=0
$$

$$
\begin{aligned}
& \text { Solution: } f(x)=x^{3}-3 x-5 \\
& f^{\prime}(x)=3 x^{2}-3
\end{aligned}
$$

Since Roots lies between $[2,3]$
Initial Point:-

$$
\begin{aligned}
& 2 \%_{0}=\frac{2+3}{2} \\
& =\frac{5}{2} \\
& =2.5
\end{aligned}
$$

NRA FORMULA:-

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}^{\prime}\right)} \\
& x_{n+1}=x_{n}-\frac{\left(x_{n}^{3}-3 x_{n}-5\right)}{3 x_{n}^{2}-3}
\end{aligned}
$$

SAPDDEN TARTA IO 535 y

$$
!\left(\begin{array}{l}
x_{n+1}=x_{n} \frac{\left(3 x_{n}^{2}-3\right)-\left(x_{n}^{3}+3 x_{n}-5\right)}{3 x_{n}^{2}-3} \\
x_{n+1}=\frac{3 x_{n}^{3}-3 x_{n}+7 x_{n}^{3}-3 x_{n}-5}{3 x_{n}-3} \\
x_{n+1}=\frac{2 x_{n}^{3}-6 x_{n}-5}{3 x_{n}^{3}-3}
\end{array}\right.
$$

$\frac{\text { Iteration 1:- }}{x_{6}=2.5}$

$$
\begin{aligned}
x_{0}+1 & =\frac{2(2.5)^{3}-6(2.5)-5}{5(0.5)^{2}-3} \\
& =\frac{31.25-15.5}{18.75-3} \\
& =\frac{11.25}{15.75} \\
& =0.7142
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Iteration } 2:-}{x_{1}+1}=\frac{2\left(x_{1}\right)^{3}-6 x_{1}-5}{3 x_{1}^{2}-3} \\
& x_{2}=\frac{2(0.7142)^{2}-6(0.7142)-5}{3(0.7142)^{2}-3} \\
& x_{2}=\frac{0.7286-4.2852-5}{1.5302-3}
\end{aligned}
$$

CAAD Bintarea ID:5554 Bg\#npl4

$$
\begin{aligned}
x_{2} & =\frac{-8.5566}{-1.4697} \\
Z & =5.8220
\end{aligned}
$$

Itteration 3:-

$$
\begin{aligned}
x_{2+1} & =\frac{2\left(x_{1}\right)^{3}-6\left(x_{2}\right)-5}{3 x_{2}^{2}-3} \\
& =\frac{2(5.8220)^{3}-6(5.8220)-5}{3(5.8220)^{2}-3} \\
& =\frac{3.94 .68-34.93-5}{101.68-3} \\
& =\frac{354.67}{98.687} \\
& =\pi=3.594 \times \text { A. }
\end{aligned}
$$

Question No :-3
Part (B)
Glue the following eq by using pullers method only perform iterations

$$
\begin{array}{r}
\left(x_{0}=0.5, x_{1}=1 x_{2}=0\right) \\
x^{3}-7 x^{2}+14 x-6 .
\end{array}
$$

Sand bin tarim
ID 5534 FgNo\#/5

$$
\begin{aligned}
& \text { Solution:- } \\
& f(x)=x^{3}-7 x^{2}+14 x-6 \\
& x_{0}=0.5 \quad x_{1}=1, \quad x_{2}=0 \\
& f\left(x_{0}\right)=(05)^{3}-7(0.5)^{2}+14(0.5)-6 \\
& f(0.5)=0.125-1.75+7-6 \\
& f(0.5)=-0.625 \\
& f\left(x_{1}\right)=x_{1}^{3}-7 x^{2}+14 x_{1}-6 \\
& =(1)^{3}-7(1)^{2}+14(1)-6 \\
& =1-7+14-6 \\
& f(1)=2 \\
& f\left(x_{2}\right)=x_{2}^{2}-7 x_{2}^{2}+14 x_{2}-6 \\
& =(0)^{3}-7(0)^{2}+14(0)-6 \\
& f(0)=-6 \\
& k_{1}=x_{1}-x_{0}=1-0.5=0.5 \\
& h_{2}=x_{2}-x_{1}=0-1=-1 \\
& \delta_{1}=\frac{f(x)-f\left(x_{0}\right)}{h,} \\
& =\frac{2-(-0.625)}{0.5}
\end{aligned}
$$

SAAD BIN TARTQ In: 5534 PgNOH16

$$
\begin{aligned}
& =\frac{2.625}{0.5} . \\
& =5.25 \\
\delta_{2} & =f\left(x_{2}\right) \cdot f\left(x_{1}\right) \\
& =\frac{-6-(-0.625)}{-1} \\
& =5.375 \\
a & =\frac{\delta_{2}-\delta_{1}}{h_{2}+h_{1}}=\frac{5.375-5.25}{-1+0.5} \\
& =\frac{0.125}{-1.5} \\
& =-0.0833 \\
b= & a \times h_{2}+\delta_{2}=-0.0833(-1)_{1}+5.375 \\
\hline & =5.4583 \\
c & =f\left(x_{2}\right)=-6 \\
x_{3} & =x_{2}+\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}} . \\
= & \frac{0}{1}+\frac{-2(-6)}{5.4583 \pm \sqrt{(5.4583)^{2}-4(-0.083)}}(-6)
\end{aligned}
$$

SAAD BINTACRA ID 5534 GिNOH17 SP

$$
\begin{aligned}
& \frac{12}{5 \cdot 488 \pm \sqrt{24.79-(1.990)}} \\
& =\frac{12}{5.4583 \pm 5 \cdot 2717} \\
& =\frac{12}{0.1866} \\
& =\quad 64.30 \\
& =\frac{12}{10.73} \\
& =1.11 \mathrm{Am}
\end{aligned}
$$

Relative Errur:-

$$
\begin{aligned}
& E_{a}=\left|\frac{x_{3}-x_{2}}{x_{3}}\right| \times 100 y=\left|\frac{1 \cdot 11-0}{1.11}\right| \times 100 y \\
&=100 \% \text { error }
\end{aligned}
$$

Now

$$
\begin{aligned}
& x_{0}=x_{1}=1 \\
& x_{1}=x_{2}-0 \\
& x_{2}=x_{3}=1.11
\end{aligned}
$$

Gambintario ro5534 Bnotll 18 And Iteration:-

$$
\begin{aligned}
& \text { And =teration:- } \\
& \begin{aligned}
& f\left(x_{0}\right)=(1)^{3}-7(1)^{2}+14(1)-6 \\
&-1-7+14-6=2 \\
& f\left(x x_{1}\right)=(0)^{3}-7(0)^{2}+14(0)-6=-6 \\
& f\left(x_{2}\right)=(1.11)^{3}-7(1.11)^{2}+14(1.11)-6 \\
&=1.377 \\
&=1.377-8.624+15.54-6 \\
&=2.2283
\end{aligned}
\end{aligned}
$$

$$
h_{1}=x_{1}-x_{0}=-6-2
$$

$$
=-8
$$

$$
h_{2}=x_{2}-x_{1}=2.283-0
$$

$$
E \quad 2.283
$$

$$
\delta_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h_{1}}=\frac{-6-2}{-8}=1
$$

$$
f_{2}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{h_{2}}=\frac{2.283-(-6)}{2.283}
$$

$$
=\frac{8 \cdot 283}{2.283}=3.628
$$

$$
a=\frac{\delta_{2}-\delta_{1}}{h_{2}+h_{1}}=\frac{3 \cdot 628-1}{(2 \cdot 283)+(-8)}=\frac{2 \cdot 628}{-5 \cdot 716}
$$

$$
=-0.459
$$

Giad Bin TARTQ ID 5534 Ponoth 19.

$$
\begin{aligned}
& b=a \times h_{2}+\delta_{2}=-(0.459)(2 \cdot 283)+3.628 \\
& C=f\left(x_{2}\right)=2 \cdot 283 \\
& x_{3}=x_{2}+\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}} \\
& =\frac{0 \pm \frac{-2(2.283)}{2.580 \pm \sqrt{(2.580)^{2}-4(-0.459)(2.283)}}}{} \\
& =\frac{4.566}{2.580 \pm \sqrt{6.65+4.1925}} \\
& =\frac{4.566}{2.580 \pm \sqrt{10.84}} \\
& =\frac{4.566}{2.580 \pm 3.290} \\
& =\frac{4.566}{5.873}=0.7744 \\
& \varepsilon a=\left\lvert\, \frac{2\left(3-x_{2}\right.}{x_{3}} \times 100 \%\right. \\
& =\left\lvert\, \frac{0.7744-0}{0.7744} \times 100 \% /=100 \%\right.
\end{aligned}
$$

Now

$$
\begin{aligned}
& x_{0}=x_{1}=0 \\
& x_{1}=x_{2}=1.11 \\
& x_{2}=x_{3}=0.7744
\end{aligned}
$$

SAAD BIN TARIQ ID 5534 Fि $16 \neq 20$ 3 rd firation.

$$
\begin{aligned}
& f\left(x_{0}\right)=(0)^{3}-7(0)^{2}+14(0)-6=-6 \\
& f\left(x_{1}\right)=(1.11)^{3}-7(1 \cdot 11)^{2}+14(1 \cdot 11)-6 . \\
& t=2.283 \\
& f\left(x_{2}\right)=(0.7744)^{3}-7(0.774)^{2}+14(0.7744)- \\
& =0.4118-3.874+10.416-6 \\
& =0.953 \\
& h_{1}=x_{1}-x_{0}=1.11-0=1.11 \\
& h_{2}=x_{2}-x_{1}=0.7744-1.11=-0.335 \\
& d_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h_{1}}=\frac{2 \cdot 283-(-6)}{1 \cdot 11} \\
& =\frac{8.28}{1.11}=7.462 \\
& f_{2}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{h_{2}}=\frac{0.953 \cdot 2.283}{0.335} \\
& =3.970 \\
& a=\frac{\delta_{2}-\delta_{1}}{h_{2}+h_{1}}=\frac{3.970-7.462}{-0.335+1.11} \\
& =-4.505
\end{aligned}
$$

SAAD BINTARIQ ID 5334 PgNoflis

$$
\begin{aligned}
& b=a \times h_{2}+\delta_{2}=(-4.505) \times(-0.335) \\
& +=5.479 \\
& c=f\left(x_{2}\right)=0.953 \\
& x_{3}=x_{2}+\frac{-2 c}{b \pm \sqrt{b^{2}}-4 a c} \\
& =1.11+\frac{-2(0.953)}{5.479 \pm \sqrt{(5.479)-4(-4.555)}(0.953)} \\
& =+1.11+\frac{(-1.906)}{5.479 \pm 3584} \\
& =1.11+\frac{(-1.906)}{9.333} \\
& =\frac{9.333(1.11)-(1.906)}{9.333} \\
& =\frac{10.3596-1.906}{9.333} \\
& =x=8.45363
\end{aligned}
$$

SAOD BiN TARTO ID5534

$$
\begin{aligned}
& =\left|\frac{8.4536-1.11}{8.4536}\right| \times 100 \% \\
& =0.868 \times 100 \% \\
& =86.8 \%
\end{aligned}
$$

Question No $4:-$
Using Gaussians Elimination mefhad folue the following system
equations

$$
\begin{aligned}
& 2 x-y+2 z=z \\
& x+10 y-3 z=5 \\
& x-y-z=3
\end{aligned}
$$

Colution:on natriu form:-

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & -1 & 2 \\
1 & 10 & -3 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right]} \\
& R_{2} \rightarrow 2 R_{2}-\mid R_{1} \\
& R_{3} \rightarrow 2 R_{3}-R_{1}
\end{aligned}
$$

SAADBIN TARIO 55,34 Bnoh 23 . In Augmented form:-

$$
\left[\begin{array}{cc:c}
\text { gmented } & -1 & 2 \\
1 & 10 & -3 \\
1 & 10 & -1 \\
1 & -1 & -1 \\
\hline
\end{array}\right]
$$

$$
\left[\begin{array}{rrr:r}
2 & -1 & 2 & \vdots \\
0 & 19 & 4 & 8 \\
0 & -1 & -4 & 4
\end{array}\right]
$$

Applying Uperations.

$$
\begin{aligned}
& R_{3} \rightarrow 19 R_{3}+R_{2} \\
& {\left[\begin{array}{cccc}
2 & -1 & 2 & 2 \\
0 & 19 & 4 & 8 \\
0 & 0 & -70 & 84
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 19 & 4 \\
0 & 0 & -70
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
x
\end{array}\right]\left[\begin{array}{l}
2 \\
8 \\
84
\end{array}\right]}
\end{aligned}
$$

Writing in equation form:-

$$
\begin{aligned}
2 x-y+2 z & =2 \Rightarrow \\
19 y+4 z & =8 \Rightarrow \\
& =70 z=84 \\
\bar{x}=\frac{84}{-70} & =-1.2
\end{aligned}
$$

SAADBINTARía IO5534 FgNOHz4
Putting in eq (ii)

$$
\begin{aligned}
& 19 y+4(-1.2)=8 \\
& 19 y+(-4.8)=8 \\
& 19 y=8+4.8=12.8 \\
& y=\frac{12.8}{19}=0.673
\end{aligned}
$$

Patting values of $y, z$ in
eq (1)

$$
\begin{aligned}
& 2 x-(0.673)+2(-1.2)=2 \\
& 2 x-0.673+(-2.4)=2 \\
& 2 x-3.073=2 \\
& 2 x=5.073 \\
& x=5.073 \\
& 2 x=2.5365 \\
& x=2.536 \quad y=0.673 \quad z=-1.2
\end{aligned}
$$

