

DATA STRUCTURES

Final Assignment
Sir. Muhammad Adil

Q1: Sort the given list using Insertion SORT.

56, 59, 45, 40, 43, 55

Given:

$$
\begin{gathered}
N=6 \\
\text { Steps }=N-1=5
\end{gathered}
$$

Step\# 1: Element $=59$
(56) (59) $45,40,43,55$

56, 59, 45, 40, 43, 55
Step\# 2: Element = 45

$$
\begin{aligned}
& \text { 56, } \underset{29}{\Rightarrow} \underset{45}{\stackrel{4}{4}}, 40,43,55 \\
& \text { (56) (45) } 59,40,43,55 \\
& \text { 45, 56, 59, 40, 43, } 55
\end{aligned}
$$

Step\# 3: Element $=40$
$45,56, \overrightarrow{59,}, \stackrel{40}{4}, 43,55$
$45, \overrightarrow{56}$ (40), 59, 43,55
(45.) 40 56,59, 43, 55

40, 45, 56, 59, 43, 55

Step\# 4: Element = 43

$$
\begin{aligned}
& 40,45,56, \stackrel{59}{\rightarrow}, \stackrel{43}{4} 55 \\
& 40,45, \stackrel{56}{\Rightarrow} \stackrel{43}{\Rightarrow}, 59,55 \\
& 40, \overrightarrow{45,} \underset{43,}{46,59,55} \\
& \text { (40) 43, } 45,56,59,55 \\
& \text { 40, 43, 45, 56, 59, } 55
\end{aligned}
$$

Step\# 5: Element = 55

$$
\begin{aligned}
& 40,43,45,56, \stackrel{\rightharpoonup}{3}, \stackrel{(55)}{\rightleftarrows} \\
& 40,43,45,56 \text { 55. } 59 \\
& \text { 40, 43, 45), 55, 56, } 59
\end{aligned}
$$

Hence 40, 43, 45, 55, 56, 59 is the sorted list.

Q2: Construct Binary Trees from given LIST OF NUMBERS AND THEN VERIFY THE TREE 25, 15, 35, 17, 33, 36, 25, 13, 15, 40, 38, 42, 20

Solution:

Verifying using In-Order Traversal method:

$$
42,40,38,36,35,33,25,25,20,17,15,15,13
$$

Hence $42,40,38,36,35,33,25,25,20,17,15,15,13$ is the sorted list.

Q3: Construct Binary Trees from given Mathematical Expressions
 I. $\mathrm{H}+\mathrm{G}$ * $2-\left(\mathrm{F}^{\wedge} \mathrm{M}\right)$
 II. A * $D+T^{\wedge} B-R$

Solution I:

$$
\begin{gathered}
\mathrm{H}+\mathrm{G} * 2-\left(\mathrm{F}^{\wedge} \mathrm{M}\right) \\
=\square=\square
\end{gathered}
$$

Hence H + G * $2-\left(F^{\wedge} M\right)$ is Converted into a binary tree.

SOLUTION II:

$A * D+T \wedge B-R$
$\square \longmapsto$

Hence A * $D+T^{\wedge} B-R$ is Converted into a binary tree.

Q4: Apply all the three Binary Tree Traversal Technioues on each of the Tree CONSTRUCTED IN O\#3

Given Tree:
H + G * $2-\left(F^{\wedge} \mathrm{M}\right)$

In-Order Traversal:

$$
H,+, G, *, 2,-, F, \wedge, M
$$

Pre-Order Traversal:

$$
+, H,-, *, G, 2, \wedge, F, M
$$

Post-Order Traversal:
H, G, 2, *, F, M, ^, -, +

Given Tree:
$A * D+T^{\wedge} B-R$

In-Order Traversal:

$$
A, *, D,+, T, \wedge, B,-, R
$$

Pre-Order Traversal:

$$
+, *, A, D,-, ~ \wedge, ~ T, ~ B, ~ R ~
$$

Post-Order Traversal:
A, D, *, T, B, ^, R, -, +

Q5: FILL IN THE BLANKS

I. Elements of a Tree are called NODES.
II. The graphical line drawn between Nodes of a Tree is called EDGE.
III. Level Number of a Root is ZERO(O).
IV. All the nodes with same Level Number belong to SAME GENERATION.
V. The Left-Most Child Node is OLDESTBROTHER Node.
VI. The Right-Most Child Node is YOUNGEST BROTHER Node.
VII. A Tree is a NON-LINEAR Data Structure.
VIII. An Ordered Set of Ordered Trees is called a FOREST.

