ASSINMENT

Problem 1: A construction company will replace an excavator after 5 years. A new one costs $\$ \mathbf{2 5 0 , 0 0 0}$. How much is the end-of-year annual uniform payment the company has to put into a bank in order to save enough money in five years' time for purchasing the equipment if the bank is offering an interest rate of 4% per annum?

Solution 1:

For the solution of the above problem, inflation free assumption is made
Principal amount $=\mathrm{S}=\$ 250,000 \quad$ Number of periods $=\mathrm{n}=5$
Interest rate in \% per period (nominal or apparent rate) $=\mathrm{i}=4 \%=0.04$
Annual uniform payment $=\mathrm{A}=$?

Fig. 1. - Sum of $\$ 250000$ accumulated by five uniform periodic (annual) payments.

Formula Used:

$S=A x\left[\left\{(1+i)^{\wedge} n-1\right\} / i\right]$
A = $S \times\left[i /\left\{(1+i)^{\wedge} n-1\right\}\right]$

```
250000 = A x [{(1+0.04)^5 - 1}/0.04]
250000 = A x [{1.21665 -1}/0.04]
250000 = A x [0.21665/0.04]
250000 = A x 5.4163
A = 250000/5.4163
A=46156.78
A = $ 46157
```

Therefore Annual uniform payment is $\boldsymbol{\$} 46157$.

Problem 2: A construction material company makes and sells window panels. The selling price per panel is $\$ 900$. The variable cost for making the window panels is $\$ 500$ per unit. The fixed cost is $\$ 8,000,000$. Find the BEP (break-even point)?

Solution 2:

Selling Price per unit $=\mathrm{p}=\$ 900 \quad$ Variable cost per unit $=\mathrm{v}=\$ 500$
Fixed Cost = FC = \$8,000,000
Break-even point $=\mathrm{BEP}=$?
Number of units $=x$

Formulas Used:

TR $=a+b+c+$ Profit
Total Cost (TC) = Variable Cost (VC) + Fixed Cost (FC)
Where as
TR = total revenue
a =Direct cost (material, labour, equipment, etc)
$b=$ Cost of administering the company
c = Costs of marketing/advertisements
At break-even point (BEP)
$T R=a+b+c$
$T R=T C$
TR = px
$T C=V C+F C$
$\mathrm{TC}=\mathrm{vx}+\mathrm{FC}$
So
Px = vx +FC
Hence, at BEP, $x=F C /(p-v)$

Mathematical Presentation:

$x=8000000 /(900-500)$
$x=8000000 / 400$
$x=20000$ units
Therefore Break-even point (BEP) $=20000$ units
Let $\mathrm{x}=18000,20000$ and 22000

The following table using different values of x , can be used to solve problem 2 :

Cost-volume-profit analysis (or Break-even analysis				
Volume	$\mathrm{x}=18000$	$\mathrm{x}=20000$	$\mathrm{x}=22000$	$\mathrm{x}=25000$
Total Revenue	16200000	18000000	19800000	22500000
Variable Cost	9000000	10000000	11000000	12500000
Fixed Cost	8000000	8000000	8000000	8000000
Total Cost	17000000	18000000	19000000	20500000
Net Income	-800000	0	800000	2000000
	Loss	BEP	Profit	

From the above table, at $x=20000$ the company's profit is zero that is the company is neither making profit nor loss. So $x=20000$ is the break-even point (BEP) of the company. In order to make profit the company must have production volume greater than 20000 units. If the production volume is less than 20000 units then the company will be at loss.

If the maximum capacity of the company is assumed 25000 units then the company's maximum profit is $\$ 2,000,000$.

BEP \% = [BEP/Maximum Capacity] $\times 100$
BEP \% = $(20000 / 25000) \times 100$
BEP \% = 80\%

Graphical presentation - Break-even chart:

The Break-even is a graphical presentation of TR, VC, FC and TC. The Fig. 2 below shows the break-even chart of problem 2.

No. of units of window pancls
Fig. 2. - The break-even chart for problem 2.

