

 NAME - M.AWAIS
SECTION - B
Semester - 2nd
ID - 16378
DEPART - (SE)
SUBJECT - Oops
SUBMITTED TO - M Ayub sir

Q3:- A) What is inheritance and why it is used, discuss in
detail ?

 (ANSWER)

Inheritance:-

 Inheritance is a mechanism in which one class acquires

the properties of another class. For example, a child inherits the traits

of his/her parents. With inheritance, we can reuse the fields and

methods of the existing class. Hence, inheritance facilities reusability

and is an important concept of oops.

Why inheritance is used:-

Inheritance is a term for reusing code by a mechanism of passing

down information and behavior from a parent class to a child or sub

class. It’s pretty easy to understand really. Just like a child can

inherit various mannerisms and behaviors from his or her biological

parents, in software this same concept holds true. By leveraging the

power of inheritance and creating child classes that extend their

parent, we can make sub classes with super powers that have

everything their parent has and more. Let’s take a look at how

inheritance works in PHP.

b. Write a program using Inheritance class on Animal in
java.
 (ANSWER)

Program:-

Cat:-

 public class Cat extendsAnimal{

 private String color;

 public Cat(boolean veg, String food, int legs) { super(veg, food, legs); this.color="White";

 }

public Cat(boolean veg, String food, int legs, String color){ super(veg, food, legs);

this.color=color;

}

public String getColor() { return color;

 }

 public void setColor(String color) { this.color = color;

 }

}

Let’s write a simple test class to create Cat object and use some of its methods.

 public classAnimalInheritanceTest {

 public static voidmain(String[] args) { Cat cat = new Cat(false, "milk",

4, "black");

 System.out.println("Cat is Vegetarian?" +

 cat.isVegetarian());

 System.out.println("Cat eats " +

 cat.getEats());

 System.out.println("Cat has "+

 cat.getNoOfLegs() + " legs.");

 System.out.println("Cat color is " +

 cat.getColor());

}

}

Java Inheritance Program Output

Output:-

Cat is vegetarian? False.

Cat eats milk.

Cat has 4 legs.

Cat colour is black.

Cat class doesn’t have getEats()method but still it works because it’s inherited from

Animal class.

Q4:- A) What is polymorphism and why it is used,

discuss in detail ?

 (ANSWER)

Polymorphism:-

 The word polymorphism is used in various

contexts and describes situations in which something occurs in

several different forms. In computer science, it describes the

concept that objects of different types can be accessed through

the same interface. Each type can provide its own, independent

implementation of this interface. It is one of the core concepts of

object-oriented programming (OOP).

If you’re wondering if an object is polymorphic, you can perform a

simple test. If the object successfully passes multiple is-a

or instance of tests, it’s polymorphic. As I’ve described in my post

about inheritance, all Java classes extend the class Object. Due

to this, all objects in Java are polymorphic because they pass at

least two instanceof checks.

Why polymorphism is used:-

 Polymorphism is the ability
of an object to take on many forms. The most common use of
polymorphism in OOP occurs when a parent class reference is
used to refer to a child class object.

Any Java object that can pass more than one IS-A test is
considered to be polymorphic. In Java, all Java objects are
polymorphic since any object will pass the IS-A test for their own
type and for the class Object.

https://stackify.com/oops-concepts-in-java/
https://stackify.com/oops-concepts-in-java/
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html
https://stackify.com/oop-concept-inheritance/
https://stackify.com/content/java/

It is important to know that the only possible way to access an
object is through a reference variable. A reference variable can be
of only one type. Once declared, the type of a reference variable
cannot be changed.

The reference variable can be reassigned to other objects
provided that it is not declared final. The type of the reference
variable would determine the methods that it can invoke on the
object.

A reference variable can refer to any object of its declared type or
any subtype of its declared type. A reference variable can be
declared as a class or interface type.

 b. Write a program using polymorphism in a class on
Employee in java.
 (ANSWER)

Program:-

/* File name : Employee.java */

public class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public void mailCheck() {

 System.out.println("Mailing a check to " + this.name + " " +

this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

 public int getNumber() {

 return number;

 }

}

Now suppose we extend Employee class as follows −

/* File name : Salary.java */

public class Salary extends Employee {

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double

salary) {

 super(name, address, number);

 setSalary(salary);

 }

 public void mailCheck() {

 System.out.println("Within mailCheck of Salary class ");

 System.out.println("Mailing check to " + getName()

 + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary/52;

 }

}

/* File name : VirtualDemo.java */

public class VirtualDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3,

3600.00);

 Employee e = new Salary("John Adams", "Boston, MA", 2,

2400.00);

 System.out.println("Call mailCheck using Salary reference --

");

 s.mailCheck();

 System.out.println("\n Call mailCheck using Employee

reference--");

 e.mailCheck();

 }

}

Output:-
Constructing an Employee

Constructing an Employee

Call mailCheck using Salary reference --

Within mailCheck of Salary class

Mailing check to Mohd Mohtashim with salary 3600.0

Call mailCheck using Employee reference--

Within mailCheck of Salary class

Mailing check to John Adams with salary 2400.0

Here, we instantiate two Salary objects. One using a Salary reference s, and the other
using an Employee reference e.

While invoking s.mailCheck(), the compiler sees mailCheck() in the Salary class at
compile time, and the JVM invokes mailCheck() in the Salary class at run time.

mailCheck() on e is quite different because e is an Employee reference. When the
compiler sees e.mailCheck(), the compiler sees the mailCheck() method in the
Employee class.

Here, at compile time, the compiler used mailCheck() in Employee to validate this
statement. At run time, however, the JVM invokes mailCheck() in the Salary class.

This behavior is referred to as virtual method invocation, and these methods are referred
to as virtual methods. An overridden method is invoked at run time, no matter what data
type the reference is that was used in the source code at compile time.

Q5:- A) Why abstraction is used in OOP, discuss in detail
?
 (ANSWER)

Abstraction:-
Definition:-
 Abstraction (from the Latin abs, meaning away from
and here, meaning to draw) is the process of taking away or
removing characteristics from something in order to reduce it to a
set of essential characteristics.

Abstraction is used in oop:-

Abstraction is selecting data from a larger pool to show only the relevant

details of the object to the user. Abstraction “shows” only the essential

attributes and “hides” unnecessary information. It helps to reduce

programming complexity and effort. It is one of the most important

concepts of OOPs.

Abstraction is the process of hiding the internal details of an application

from the outer world. Abstraction is used to describe things in simple

terms. It’s used to create a boundary between the application and the

client programs.

Objects are the building blocks of Object-Oriented Programming. An

object contains some properties and methods. We can hide them from

the outer world through access modifiers. We can provide access only

for required functions and properties to the other programs. This is the

general procedure to implement abstraction in OOPS.

 b. Write a program on abstraction in java.

 (ANSWER)

Program:-
 // Abstract class

 abstract class Animal {

 // Abstract method (does not have a body)

public abstract void animalSound();

 // Regular method

 public void sleep() {

 System.out.println("Zzz");

}

}

// Subclass (inherit from Animal)

 class Pig extends Animal {

 public void animalSound() {

 // The body of animalSound() is provided here

System.out.println("The pig says: wee wee");

}

 }

 class MyMainClass {

 public static void main(String[] args) {

 Pig myPig = new Pig(); // Create a Pig object

 myPig.animalSound();

myPig.sleep();

}

}

Q1. a. Why access modifiers are used in java, explain in
detail Private and Default access modifiers?

 (ANSWER)
Access Modifiers:-

A Java access modifier specifies which classes can access a

given class and its fields, constructors and methods. Access

modifiers can be specified separately for a class, its constructors,

fields and methods. Java access modifiers are also sometimes

referred to in daily speech as Java access specifiers, but the

correct name is Java access modifiers. Classes, fields,

constructors and methods can have one of four different Java

access modifiers.

Private access modifiers:-

If a method or variable is marked as private (has

the private access modifier assigned to it), then only code

inside the same class can access the variable, or call the method.
Code inside subclasses cannot access the variable or method,
nor can code from any external class.

Classes cannot be marked with the private access modifier.

Marking a class with the private access modifier would mean

that no other class could access it, which means that you could

not really use the class at all. Therefore the private access

modifier is not allowed for classes.

Default access modifier:-

The default Java access modifier is declared by not writing any
access modifier at all. The default access modifier means that
code inside the class itself as well as code inside classes in the
same package as this class, can access the class, field,
constructor or method which the default access modifier is

assigned to. Therefore, the default access modifier is also

sometimes referred to as the package access modifier.

Subclasses cannot access methods and member variables
(fields) in the superclass, if they these methods and fields are
marked with the default access modifier, unless the subclass is
located in the same package as the superclass.

 b. Write a specific program of the above mentioned
access modifiers in java.
 (ANSWER)

Program for Private access modifiers:-

 class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

class A{

private A(){}//private constructor

void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();//Compile Time Error

 }

}

Program for Default access modifier:-

//save by A.java

package pack;

class A{

 void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

Q2:- A) Explain in detail Public and protected access
modifiers?

Public access modifiers:-

The Java access modifier public means that all code can

access the class, field, constructor or method, regardless of
where the accessing code is located. The accessing code can be
in a different class and different package.

The public access modifier is accessible everywhere. It

has the widest scope among all other modifiers.

protected access modifiers:-

The protected access modifier provides the same access as

the default access modifier, with the addition that subclasses

can access protected methods and member variables (fields)

of the superclass. This is true even if the subclass is not located
in the same package as the superclass.

The protected access modifier is accessible within

package and outside the package but through

inheritance only.

The protected access modifier can be applied on the

data member, method and constructor. It can't be

applied on the class.

It provides more accessibility than the default modifer.

 b. Write a specific program of the above mentioned
access modifiers in java.

 (ANSWER)

Program for Public access modifiers:-

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}

Output:-

 Hello

Program for protected access modifiers:-

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B extends A{

 public static void main(String args[]){

 B obj = new B();

 obj.msg();

 }

}

Output:-

 Hello

 (THE END)

