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Abstract-In recent years, underwater acoustic sensor 

networks (UASN) have attracted researchers' attention due to 

their various applications. UASNs faces some problems and 

challenges, such as limited bandwidth, high propagation delay, 

3D topology, media access control, routing, resource usage and 

energy constraints. Unlike the Terrestrial Wireless Sensor 

Network (TWSNs) node, UASNs is plagued by energy 

constraints, which seriously affects the longevity and speed of 

the network. The simulation of UASN is common to 

researchers because it helps to analyze the function and 

performance of UASN before implementing and deploying 

UASN, which involves a lot of cost and time. Among the 

different simulation platforms that can be used to simulate 

UASN, UnetStack is one of them. It is an effective and well-

known tool that can be used to simulate UASN, and has 

obvious advantages. However, the current UnetStack does not 

provide a direct function to monitor the energy of the node 

during the simulation process, which is very important. This 

article describes the design of residues and the framework for 

implementing the energy model in UnetStack. In addition, 

because of the experimental simulation, it can display the 

number of frames sent and received and the energy 

consumption of the node over time. In addition, the 

implemented energy model framework allows researchers to 

design energy-efficient routing protocols and load balancing 

methods. 

1. Keywords: Energy Model Framework, Network Lifetime, 

Energy Depletion, UnetStack. 

 

I. Introduction  

As the demand for the development of marine resources 

increases, people are becoming more aware of the 

application of underwater sensor technology to marine 

monitoring. Underwater Acoustic Sensor Network (UASN) 

has been widely proposed as a promising solution to support 

various marine applications, such as pollution monitoring, 

coastal exploration, navigation assistance and mine 

identification [1].UASN faces some problems and 

challenges, such as limited bandwidth, high propagation 

delay, 3D topology, media access control, routing, resource 

usage and energy constraints [2].A typical UASN consists 

of multiple sensor nodes fixed on the seabed and wirelessly 

interconnected with one or more underwater gateways. 

Underwater sidewalks are specific nodes equipped with 

vertical and horizontal transceivers. The vertical transceiver 

is used to send commands and configuration data to the 

sensor nodes, and to further obtain the collected data. The 

horizontal transceiver is used to relay the monitored data to 

the surface station [3].The data is usually linked from the 

bottom to the surface station via a multi-hop path within the 

sensor network. Lifetime is one of the key factors in any 

communication network that uses battery-powered 

equipment. The longer the service life, the better the system. 

Compared with traditional terrestrial wireless sensor 

networks (TWSN), UASN presents severe challenges in 

terms of personnel and budget to manually extend the life of 
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the network. Unlike TWSN, UASN nodes consume energy 

for various reasons. Some of the reasons for the shortened 

network life are the environment, the high energy 

consumption of sensor hardware, and improperly designed 

protocols. Therefore, compared with WSN, UASN nodes 

require more energy, because the distance covered by the 

acoustic signal is very long, and more complex signal 

technology is implemented. In addition, multipath routing in 

UASNs affects the energy of the node when one node is 

involved in the transmission of data from another node.  In 

UASN, nodes are not static like TWSN, but nodes move 

Due to the different activities and environments of the 

underwater environment, it is usually in an underwater 

water flow of 2-3 m/sec [2]. With the exception of surface 

nodes (wells), most nodes deployed in UASN are subject to 

energy constraints and cannot be charged. However, it is not 

possible to use solar energy to charge or periodically replace 

discharged batteries in an underwater environment [1]. 

Simulation of UASN is a common aspect of research 

because it facilitates a cost-effective and time-consuming 

method of analyzing the operation and performance of 

UASN before implementing and deploying UASN. There 

are several simulation platforms that can be used to simulate 

UASN, but not all are open source. Compared with Aqua-

Sim, DESERT and SUNSET, UnetStack supports a 

seamless transition from simulation to actual field 

deployment without changing code and design. Therefore, 

the compiled binary emulation code can be directly ported 

to any modem compatible with UnetStack for field or 

laboratory testing without additional cross-compilation [4]. 

In terms of efficiency, UnetStack supports real-time 

operating modes with discrete events. Therefore, UnetStack 

has become an ideal choice for researchers to conduct 

UASN simulation and then transition to actual field 

deployment. UASN's MATLAB and NS-2 simulations are 

also very popular in the literature. For MATLAB-based 

simulations, most are specific applications. Although 

MATLAB can be used for in-depth simulation, it is not 

possible to define personalized topology and power models. 

In addition, there is no defined definition method to monitor 

factors such as packet transmission, loss and collision that 

may be of interest to researchers or may even affect the 

performance of the submarine network. In addition, in 

MATLAB simulation, not all routing protocols are 

supported. Another important issue to consider is node 

mobility, and there is no ability to simulate node mobility in 

this simulator [5]. The latest version available is NS-2.36. 

Except for NS-2.30, NS2 does not provide any integrated 

software package that supports UASN simulation. The other 

simulation scripts NS-2.30 written in the above version are 

difficult to execute. Therefore, in NS-2.35 and later, UASN 

simulation needs to model all the characteristics and 

propagation models of underwater channels [6]. It uses C++ 

and Python to write scripts easily and supports visualization 

[7]. The UAN model has four main components: channel, 

PHY, MAC and underwater autonomous driving (AUV) 

model. The framework aims to simulate the behavior of 

AUV. The communication stack associated with the AUV 

can be modified according to simulation requirements. 

Generally, the default underwater stack includes a half-

duplex acoustic modem, Aloha MAC protocol, and a 

common physical layer. 

II. RELATED WORK 

This part of the paper starts from various aspects of 

underwater communication research and introduces the 

importance of implementing an energy model in UnetStack. 

In addition, the energy model needs to be implemented in 

the UnetStack platform. Mandar Chitre et al. [8], UnetStack 

developers introduced a detailed introduction and overview 

of the UnetStack architecture. In addition, the author 

provides detailed information about the different services 

available and a set of predefined agents that provide the 

service in his contribution.  

2.1 SIGNIFICANCE OF ENERGY MODEL IN UNDERWATER 

RESEARCH 

As described in Section 1, node energy monitoring in UASN 

is very important in all aspects of underwater research, such 

as energy consumption analysis, design of routing protocols 

based on the following aspects, data collection strategies, 

and mitigation of energy gaps and load balancing. This 

section describes the importance of energy monitoring in the 

above research issues. Han Guangjie, etc. [1] A reverse 

routing protocol based on asymmetric link (AREP) is 

proposed to ensure bidirectional data communication 

between the source node and the destination node. The 

author discusses the influence of the directional beam width 

of submarine nodes on the communication link. In addition, 

the author conducted three case studies on communication 

links. These case studies show that for a directional antenna 

with a fixed beam width, the change in the relative position 

of two geographically adjacent nodes is likely to produce an 

asymmetric link. Compare AREP performance with 

adaptive feedback based on link state (LAFR) routing. 

AREP can shorten the transmission time and increase the 

data packet transmission speed in the underwater 

environment. Mari Carmen Domingo and Rui Prior [9] 

proposed a mathematical analysis of the total energy 

consumption of underwater acoustic networks in shallow 

and deep water. Relaying or grouping based on routing 

protocols for shallow and deep water scenarios has been 

studied. Finally, the author concludes that the routing 

protocol based on clustering scheme can save more energy 

and show better performance in shallow water. Xing 

Guanglin others. [10] The UASN was deployed on a named 

data network (NDN), and the NDN-based topology explored 

the power consumption of the NDN-based UASN under 

shallow and deep water conditions. Relay network. 

Simulations were carried out in NS-3 and MATLAB to 

analyze the results of the energy consumption model of 

NDN-based UASN relays in shallow and deep water. 
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MATLAB does not provide any methods for defining 

custom topologies or methods for monitoring factors such as 

packet transmission, collision, and loss. In the first step, the 

sensor nodes are deployed in a rigid graph-based topology, 

and the physical data is relayed to the short-distance data 

collector through multi-hop acoustic communication. Then, 

in the second stage, the AUV periodically accesses the data 

collector to recover the data with high-speed communication 

in visible light. Simulations were conducted in MATLAB 

2016b, and the results show that the topology optimization 

scheme can extend the life of the network. The author 

proposes an algorithm that can overcome the interference 

during the transmission of data packets by defining a unique 

data packet retention time for each sensor node. The 

variable transmission range of the sensor node is used to 

perform position less band gap attenuation. The variable 

transmission range of the sensor node is used to perform 

band gap attenuation without position. Although these 

results prove the performance of the proposed method, they 

cannot be used for real-time implementation. Therefore, the 

results obtained using UnetStack can be used not only for 

simulation, but also for real-time deployment. Therefore, the 

UnetStack energy model implemented in this paper proves 

its necessity. 

2.2. NEED FOR ENERGY MODEL IMPLEMENTATION IN 

UNETSTACK 

UnetStack, Aqua-Sim, SUNSET and DESERT are some of 

these tools, which can be used actively and downloaded for 

free. Based on the most popular NS-2 simulator, Aqua-Sim 

[13] is a package-level simulation platform. Similar to NS-2, 

Aqua-Sim also uses an object-oriented design style and 

provides researchers with a wealth of underwater protocols. 

However, currently in Aqua-Sim, it does not support a 

seamless transition from simulation to field deployment, 

because it only focuses on simulation and simulation. 

DESERT [14] and SUNSET [15] are simulation, simulation 

and experiment tools based on NS-2 and NS2-Miracle. 

Similar to DESERT, SUNSET can easily handle simulation, 

seamless transition between simulation and field test. In 

terms of efficiency, DESERT and SUNSET are extended 

from NS-2. For example, both platforms have a main single-

threaded process, and events are scheduled to run in 

sequence by a strict event scheduler, which is sensitive to 

events of limited duration. On the other hand, UnetStack 

supports real-time operation mode with discrete events. 

Therefore, the compiled binary simulation code can be 

directly ported to any modem compatible with UnetStack 

(such as Subnero) for field or laboratory testing without 

additional cross-compilation [4]. In addition, in the case of a 

transparent transition from simulation to simulation or field 

deployment, SUNSET and DESERT are based on Ns-2 and 

Ns2-Miracle, which are mainly Ns-2 simulators' caution 

events. Therefore, during the transition from discrete event-

based simulation to real-time simulation distributed on these 

platforms, major changes to the code and design may be 

required, which may cause other problems. For example, 

when simulating an application, if it uses centralized global 

network information, you must be very careful when 

transferring code from the simulation to the application 

when simulating the same application. For example, it is 

difficult to identify problems related to synchronization of 

events in the simulation. For example, it is difficult to 

identify problems related to synchronization of events in the 

simulation. In addition, in DESERT, the packet conversion 

method is not very practical, which may lead to higher 

packet conversion overhead [4]. UnetStack uses an agent-

based architecture and supports real-time simulation. 

Therefore, the same compiled binary code used in the 

simulation can be directly transplanted to the underwater 

modem compatible with UnetStack without cross-

compilation for simulation or field test. Therefore, 

UnetStack has become an ideal choice for researchers to 

conduct experiments. Therefore, it is very important to 

implement an energy model that is not currently available in 

UnetStack.  

III. RESIDUAL ENERGY MODEL FOR UWSN 

The main purpose of the proposed work is to provide a 

residual energy model framework to deepen the energy-

related algorithms in UnetStack. In this proposed work, the 

author Guangjie Hana et al. proposed a residual energy 

module. [1] Implemented in UnetStack. The detailed 

implementation of the existing energy model framework 

described in Section 4 below can be expanded modified 

according to the specific needs of researchers or industries. 

In this proposed work, the initial energy of the node is 

derived for each transmission and reception of the data 

packet. As described by the author Guangjie Hana et al. [1] 

Equation. (4) Represents the energy consumed during this 

period to transmit and receive m-bit data packets. 

3.1 ENERGY CONSUMPTION DURING THE TRANSMISSION 

OF M-BIT PACKET 

The following equation (1) indicates energy consumption 

during transmission of m-bit packets. 

 

Etx (m, l) = m ∗ Eelec+ m ∗ Tb ∗ C ∗ H ∗ l ∗ e# (f) ∗ l (1) 

Where, 

Eelec–the energy consumed by the transmitter 

electronic to process one bit of data 

l - The transmission distance 

Tb- bit duration 

H - Water depth 

 

• C - an empirical constant calculated using Equation. (2) 

C = 2π∗0:67 ∗10-9:5 (2) 

 

•# (f) - a frequency dependent medium absorption   

coefficient (in db/km) calculated using Equation. (3) 

 

(f) = 0:036 ∗ f 3/2 (3) 
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Where, f is frequency of sound wave (in kHz) underwater. 

3.2 ENERGY CONSUMPTION DURING THE RECEPTION OF 

M-BIT PACKET 

The following Equation (4) indicates the energy 

consumption during the reception of m-bit packet. 

 

Erx (m, l) = m ∗ Eelec (4) 

 

IV. IMPLEMENTATION OF ENERGY MODEL IN 

UNESTACK 

This part of the article introduces the implementation of the 

residual energy model framework in UnetStack (see section 

3). First, an overview of UnetStack is introduced, followed 

by a physical proxy and detailed information about the 

analog modem used in UWSN simulation. Finally, the 

detailed implementation of the residual energy model 

framework is given.  

4.1 OVERVIEW OF UNETSTACK 

UnetStack is part of the Unet project and was developed at 

the National University of Singapore’s Acoustic Research 

Laboratory in 2004. UnetStack is a proxy-based stack, 

which is the foundation of the submarine network simulator 

and can be easily used for the deployment and testing of 

submarine networks. In the default stack UnetStack, a 

collection of software agents representing different layers of 

the network stack is provided. These agents provide well-

defined services from all layers of the network stack. 

 

 

Fig 1: UnetStack architecture 

 
This agent-based approach has produced a flexible network 

stack, and its solution is based on multiple layers, so that 

software-defined submarine networks can be quickly 

designed, simulated, tested, and deployed. In addition, 

because the stack is extensible, new agents and services can 

be added or existing agents can be replaced to meet 

development requirements. As shown in Figure 1, 

UnetStack's architecture uses a service-oriented architecture 

approach, where the stack defines a set of software agents 

that provide well-defined services. The agent plays the same 

role as each layer of the traditional network stack. To 

achieve this agent-based approach, UnetStack uses the open 

source fjage lightweight agent framework (Java and Groovy 

agent framework) 5. The fjage framework provides the basic 

implementation that forms the basis of UnetStack. In 

addition, UnetStack uses fjage to define agents and their 

services in its stack. Agents are the basis of UnetStack, 

exchanging messages, providing services and implementing 

protocols. We can also develop our own agents. UnetStack 

provides the UnetAgent base class for this, which 

implements most of the basic behaviors required by well-

behaved agents. The agent in UnetStack is an independent 

software component that provides well-defined functions 

and more flexible interaction with other agents. Agents 

interact with each other through messages. The types of 

messages used in UnetStack can be divided into request, 

reply and notification. There is always an associated request 

in response, and no notification is requested. The message 

does not always have to be sent to a specific agent, but it can 

also be published on the topic. Any agent subscribing to this 

topic will receive broadcast messages about this topic. 

Unsolicited notifications are usually sent on topics 

associated with the agent; because the agent does not know 

in advance which other agent is interested in the 

notification. A well-integrated set of fully integrated 

requests, responses and notifications are called services. If 

the agent provides the service, it will announce the service 

by saving it to the "directory". Services can define 

functions, and these functions represent optional functions 

that the service can choose to implement. Agents release this 

function so that other agents can interrogate [8]. The main 

services defined by UnetStack are physical services, 

datagram services, MAC services, routing and routing 

maintenance services, transmission services, remote access 

services, telemetry services, the service links and node 

information services [8].  

4.2 RESIDUAL ENERGY MODEL IN UNETSTACK 

In the implementation of energy models, the 

HalfDuplexModem class is extended by implementing a 

class called EnergyModelModem, which adds energy 

monitoring functions. The hierarchy of extension classes is 

shown in Figure 2 and Algo. Figure 3 shows the 

implementation implemented in the extended 

EnergyModelModem class. The extended 

EnergyModelModem class should be able to register to 

handle incoming datagram requests and notify it of physical 

and datagram services. In addition, the expansion modem 

must monitor each transmission and reception to calculate 

the energy consumption of the node. To this end, the 
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extended modem agent must monitor two physical agent 

notification messages, which are the frame transmission 

notification and the received frame notification of the base 

class when processing the transmission and reception of 

node data separately Send these notification messages. To 

send these messages, the HalfDuplexModem class calls 

send() defined in the fjage agent and passes the message 

instance as a parameter, because HalfDuplexModem is an 

extension of the UnitAgent class, and UnitAgent is extended 

from the Agent class of fjage, from the top of the hierarchy 

Call "send()" in the Agent class.  

Therefore, in the extended EnergyModelModem that 

reaches the last level of this hierarchy, this "send()" will be 

overwritten and defined to check whether the message 

instance received as a parameter is a TxFrameNtf or 

RxFrameNtf message instance. The energy consumed for 

this is if the parameter is For the instance of 

TxFrameNtfmessage, the data transmission 

is calculated; if the parameter is an RxFrameNtf message, 

the received data is calculated, because the design of the 

energy model that we use to calculate the transmission 

energy needs to calculate the size of the transmission 

energy. 

Fig 2: UnetStack: Energy model class diagram 

Data distance between the sending and receiving nodes. We 

need to obtain the data sent from the node and the location 

of the node. These are the data transmission nodes retrieved 

by the datagram request message generated when processing 

the request. 

Finally, in the simulation, the EnergyModelModem 

customized for monitoring the remaining energy was added 

by configuring the modem parameters, so it was added as a 

physical agent to the container for the nodes running in the 

simulation.  

 

Table 1 lists the parameters used in the energy model 

implemented with reference to equations (1) and (4) in 

Section 3. Table 2 gives the other two parameters, water 

depth (H) and transmission distance (l), depending on the 

simulation.  

 

V. RESULTS AND ANALYSIS 

This section of the article introduces the simulation 

topology, parameters and different schemes for 

verifying/demonstrating the residual energy model 

implemented in UnetStack. In addition, the topology was 

simulated for duration of 1 minute. (The first case) 1 hour 

(Case 2). In addition, case I and case II were simulated, with 

or without receipt (ACK). The successful implementation of 

the remaining energy model in UnetStack is illustrated by 

parameters, such as the total number of data packets 

sent/sent and received by all active nodes and their relative 

energy consumption. Case-I provides in-depth simulation of 

the implemented modules, while Case-II provides the 

robustness of the implemented modules with detailed 

simulation. ACK hop-to-hop simulation ensures reliable 
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package delivery. In the UnetStack simulation, the 

RewableLink type uwlink agent available in the default 

stack provides link layer services with 

segmentation/reassembly and reliability at the link level. 

When using uwlink to send data, you can activate hop-by-

hop ACK to achieve reliable transmission. This can be done 

by setting the reliability field to true. If the router agent is 

used to send data, uwlink is the default link agent. When the 

ACK skip function is available by default, or when adding a 

route, you can explicitly control it using the reliability field 

set to true or false. Router agents provide routing services 

based on routing tables.  

5.1 SIMULATION TOPOLOGY AND PARAMETERS 

Fig 3: Simulation topology 

 

This section introduces the simulation topology and its 

parameters as well as the values related to the residual 

energy model implemented in UnetStack. Figure 3 shows 

the simulation topology consisting of 7 nodes. As shown in 

Figure 3, circles represent nodes, and dotted lines connect 

nodes as neighbors to each other. In addition, the solid line 

with arrows indicates the data flow, and the value next to the 

line indicates the Euclidean distance (l) between the 

connected nodes. Table 2 lists the simulation parameters and 

the parameters configured for the energy models H and l 

with reference to equations (1) and (4) in Section 3. 

5.2 CASE-I: 

This section introduces topology simulation, as shown in 

Figure 2. The duration of 1 minute is 3, with and without 

ACK. In addition, node 5 and node 1 are configured as a 

source and a sink, respectively.  

Total packets sent/forwarded: The multi-line diagram in 

Figure 4 illustrates the total number of packets sent/sent by 

all nodes with hop-by-hop ACKs defined in the simulation. 

Since Node-1 is the receiver, it only sends ACK packets. 

The data packet sent by node 4 includes the data packet to 

be sent to node 3 and the ACK is returned to node 5. 

Similarly, the data packets sent from nodes 3 and -2 include 

the data packets sent to nodes 2 and -1, respectively, and the 

returned ACK.  

 

 Fig 4: Total packets sent/forwarded with ACK 

 

Eventually, Node-5, which is a leaf node, sent its own data 

packet. As shown in Figure 4, each mark on the graph 

represents an event sent by data packet transmission or by 

receiving confirmation, except for node 5, which only 

occurs in the sent data packet and node 1 ACK. In addition, 

as shown in Figure 4, node 5 sends 5 data packets, 

Therefore, 10 sent events (5 packets + 5 ACKs) are recorded 

at nodes 4 and -3. On node 2, 9 transmission events (5 

packets + 4 ACKs) were recorded, so 4 transmission ACKs 

were recorded on node 1. In addition, in Figure 4, you can 

also see the delay in sending packets and ACK sending 

events.  

 Fig 5: Total packets sent/forwarded without ACK 

 

Figure 5 illustrates the total number of data packets sent by 

all nodes with no ACK defined in the simulation. We can 

notice that node 1 has no graph, because it is about the 

receiving node, and here it does not send ACK. The data 

packet sent by node 4 includes the data packet to be sent to 

node 3. Similarly, packets sent from nodes 3 and -2 include 

packets sent to nodes 2 and -1, respectively. Eventually, 



 

 

 

7 | P a g e  

 

Node-5, which is a leaf node, sent its own data packet. As 

shown in FIG. 5 without ACK, the number of data packets 

sent by node 5 corresponds to the number of data packets 

transmitted by intermediate nodes 4 and -3. At node 2, the 

number of retransmitted data packets is one less than the 

previous node due to the end of the simulation. The 

numerical values shown in Figures 4 and 5 prove that the 

energy model implemented in UnetStack is correct for the 

normal operation of packet transmission/retransmission 

events.  

Total packets received: The multi-line diagram in Figure 6 

illustrates the total number of packets received by all nodes 

with hop-by-hop ACK. Since node 1 is the receiver, it only 

receives data packets sent by node 2. Leaf node Node-5 only 

receives the ACK sent by node 4. The remaining nodes 

receive the previous hop and ACK sent from the next hop.  

 
Fig 6: Total packets received with ACK 

 

As shown in FIG. 6, each mark on the figure indicates that a 

packet or ACK event is received, except for node 5, which 

occurs only in the received ACK and the received packet of 

node-1. In addition, as shown in Figure 6, node 5 sent 5 

packets, so nodes 4 and -3 recorded 10 reception events (5 

packets + 5 ACKs). At node 2, 8 received events (4 packets 

+ 4 ACKs) are recorded. Therefore, at node 1, 4 received 

packets are recorded. In addition, the data packets sent and 

received can be mapped in Figures 4 and 6, respectively. 

Figure 7 illustrates the total number of packets received by 

all unacknowledged nodes. It should be noted that since it is 

the source node and does not receive any ACK, there is no 

graph for node 5. Node 1 on the receiving side only receives 

data packets transmitted by node 2. The remaining nodes 

receive the data packet sent from the previous node. As 

shown in Figure 7 without ACK, the number of data packets 

received by node 1 corresponds to the number of data 

packets transmitted by intermediate node 2 (Figure 5). The 

same is true for Node-3 and -4.  

 Fig 7: Total packets received without ACK 

 
The values shown in Figures 6 and 7 demonstrate the correct 

function of the energy model implemented in UnetStack for 

the events received by the packet.  

Depletion of node energy: This section describes the 

successful implementation of the main objectives of the 

proposed work.  

 Fig 8: Energy depletion for all active nodes with ACK 

 

The multi-line diagrams shown in Figures 8 and 9 represent 

the energy consumption of all active nodes, which are the 

result of all transmissions and receptions performed by the 

nodes. The figure does not show the energy consumption of 

nodes 6 and -7, because these nodes do not send or receive 

data packets (Figures 4, 5, 6 and 7), but can detect the 

transmission (Figure 3) the energy remains unchanged. The 

mark on the graph indicates that a send or receive event has 

occurred on the node. Figure 8 shows the energy 

consumption curve of ACK hop-to-hop nodes. We can see 

from the figure that node 1 (ie the receiver) consumes the 

least energy. Since node 1 does not participate in forwarding 

the data packet to the next hop, it receives the data packet 

from node 2 and returns the ACK of the received data 
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packet to node 2. Then, node 5 as a source has less energy 

consumption because it only sends the data packet to the 

next hop, node 4, and receives ACK from node 4. In 

addition, nodes -2, -3, and -4, which are intermediate nodes, 

have higher energy consumption because these nodes 

receive data packets from the previous hop, return ACKs 

from the previous hop, and transmit the data packets to the 

next hop and from the next One hop to receive ACK. As 

shown in FIG. 8, the number of marks on a single node 

graph is the sum of the number of marks on each node graph 

in FIGS. 4 and 6. In addition, it can be seen in FIG. 8 that 

energy consumption for packet transmission = forward 

packet> ACK transmission> packet reception> ACK 

reception.  

 

Fig 9: Energy depletion for all active nodes without ACK 

The graph in Figure 9 shows the node energy consumption 

without ACK. It can be seen that, similar to the graph in 

Figure 8, node 1 has the lowest energy consumption because 

it only participates in receiving data packets. Node 5 has run 

out of energy and cannot send its own data packets. The 

other nodes lose the energy to receive the data packet in the 

previous hop and transmit the data packet to the next hop. 

Similar to FIG. 8, the total number of marks can be checked 

between FIG. 9 and FIGS. 5 and 7. The values shown in 

Figures 8 and 9 demonstrate the correct function of the 

energy model implemented in UnetStack during the 

transmission, reception, transmission, and ACK 

transmission and reception of data packets.  

 
Fig 10: Total packets sent/forwarded with ACK 

5.2 CASE-II: EXTENDED SIMULATION AND 

ANALYSIS 

This section introduces extensive topology simulation, as 

shown in Figure 2. 3. The duration is 1 hour, with and 

without ACK. In addition, node 5 and node 1 are configured 

as a source and a sink, respectively. Compared with case I, 

in case II, the initial energy of the node is configured to 

0.5J.  

Total packets sent/forwarded: The multi-line diagram in 

Figure 10 illustrates the total number of data packets sent by 

all nodes through a hop-by-hop ACK. Since node 1 is the 

receiver, it only sends ACKs for the packets received from 

node 2. The data packets sent from nodes 4, -3 and -2 

include the data packet sent at its next hop and the 

acknowledgment sent at its previous hop. As shown in FIG. 

10, since node 1 only sends an ACK, node 1 sends the least 

number of data packets, which depends on the number of 

data packets it receives from node 2. The number of data 

packets sent by node 5 is higher than that of node 1, but less 

than other nodes. Since node 5 must only send its own data 

packets, or retransmit some data packets when no ACK is 

received from node 4. However, for the intermediate nodes 

(nodes 2, -3 and -4), they have the same task of transmitting 

the packet at the next hop and sending the ACK to its 

previous hop. The number of packets sent is different 

because it depends on the number of packets they transmit 

or retransmit and the number of ACKs they send, which in 

turn depends on the number of packets they receive. . In this 

case, in FIG. 10, the node 4 has the maximum number of 

data packets sent.  
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Fig 11: Total packets sent/forwarded without ACK 

Figure 11 shows the total number of packets sent by all 

nodes without ACK. Here, in addition to node 1, sending 

data packets involves the source 5 nodes, and forwarding 

data packets involves the intermediate nodes (nodes 4, -3 

and -2). Since all data packets sent from node 5 are 

transmitted through each intermediate node, the power 

consumption of all these nodes is the same. As shown in 

Figure 11, node-1 (that is, the receiving node) does not send 

any data packets. The number of data packets sent by 

intermediate nodes (nodes 4, -3 and -2) is the same as the 

data packets sent from node 5. Therefore, in FIG. 11, the 

graphs of these nodes overlap. 

Total packets received: 

 Fig 12: Total packets received with ACK 

The multi-line diagram in Figure 12 illustrates the total 

number of packets received by all nodes with hop-by-hop 

ACK. Since node 1 is the receiver, it only receives data 

packets sent by node 2. The node 5 as the source receives 

only the ACK sent by the node 4. The remaining nodes 

receive the previous hop and ACK sent from the next hop. 

As shown in Figure 12, Node 1 and Node 5 have a similar 

number of packets and acknowledgments. For intermediate 

nodes (nodes 4, -3 and -2), the number of packets received 

depends on the number of packets transmitted to them, the 

packets processed at that node, and the packets forwarded. 

In this case, in Figure 12, node 4 receives the largest number 

of packets, then nodes 3 and -2. 

 Fig 13: Total packets received without ACK 

As shown in FIG. 13, the source node 5 has not received any 

data packet. Intermediate nodes (nodes 4, -3 and -2) and 

node 1 receive an equal number of packets sent from their 

respective previous hops. Therefore, in FIG. 13, it can be 

observed that the number of data packets received at these 

nodes overlap. 

Depletion of node energy: The multi-line diagrams in 

Figures 14 and 15 illustrate the timeout energy consumption 

of all active nodes. Similar to the graph shown in FIG. 8, 

FIG. 14 here shows a graph of the energy consumption of 

nodes with ACK hop-to-hop. One well Node-1 has the 

lowest energy consumption. Since node 1 does not 

participate in the next hop data packet transmission, it only 

receives the data packet transmitted by node 2 and returns 

the ACK to node 2. Nodes 4 and -3 have higher 

consumption because these nodes have the highest number 

of send and receive events. In addition, the source Node-5 

has higher consumption than Node-2 in sending and 

forwarding data packets and receiving ACK.  
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 Fig 14: Energy depletion for all active nodes with ACK 

The graphs in FIGS. 10 and 12 can be used to check the 

power consumption shown in FIG. 14 to understand the 

power consumption during transmission, transmission, 

retransmission, ACK transmission, and reception of ACK 

packets.  Figure 15 shows the energy consumption curve of 

the node without ACK. Here, since node 1 is the receiver, it 

only receives the data packet sent by node 2. Therefore, it 

has the lowest energy consumption. Intermediate nodes 

(nodes 4, -3 and -2) overlap because the energy 

consumption through these nodes is the same.  

 Fig 15: Energy depletion for all active nodes without ACK 

Since these nodes are involved in sending and receiving data 

packets, all data packets are also transmitted without losing 

data packets due to collisions. Node 5 as the source only 

participates in sending data packets to its next hop node 

4.Since the energy consumed by sending is always greater 

than the energy consumed by receiving, its depletion rate is 

higher than node 1 and lower than other intermediate nodes. 

The graphs in FIGS. 11 and 13 can be used to check the 

power loss shown in FIG. 15 to see the power loss during 

the transmission, transmission, and reception of data 

packets. 

VI. CONCLUSION AND FUTURE WORK 

UnetStack is one of the most commonly used submarine 

network simulation tools. The unavailability of its residual 

energy model has prompted people to design and implement 

it. The implemented module extends UnetStack's existing 

HalfDuplexModem implementation for personalized 

calculation of remaining energy. Using basic and 

comprehensive simulations, a residual energy model for the 

number of packets sent and received and the energy 

consumption of all nodes is demonstrated. Taking into 

account other parameters of the submarine network (this is 

the future scope of this work), the energy calculation can 

still be performed very accurately.  
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