

1 | P a g e

A Framework for Residual Energy Model in

UnetStack Simulator for Underwater Sensor

Networks

 Sheeraz Ahmed

Faculty of Engineering and

Technology,

Gomal University,

Dera Ismail Khan, Pakistan

asheeraz_pk@hotmail.com

Iman

Student of Computer Science,

Iqra National University,

Peshawar, Pakistan

Imaankhan850@gmail.com

Iman

Student of Computer Science,

Iqra National University,

Peshawar, Pakistan

Imaankhan850@gmail.com

Iman

Student of Computer Science,

Iqra National University,

Peshawar, Pakistan

Imaankhan850@gmail.com

Iman

Student of Computer Science,

Iqra National University,

Peshawar, Pakistan

Imaankhan850@gmail.com

Iman

Student of Computer Science,

Iqra National University,

Peshawar, Pakistan

Imaankhan850@gmail.com

Abstract-In recent years, underwater acoustic sensor

networks (UASN) have attracted researchers' attention due to

their various applications. UASNs faces some problems and

challenges, such as limited bandwidth, high propagation delay,

3D topology, media access control, routing, resource usage and

energy constraints. Unlike the Terrestrial Wireless Sensor

Network (TWSNs) node, UASNs is plagued by energy

constraints, which seriously affects the longevity and speed of

the network. The simulation of UASN is common to

researchers because it helps to analyze the function and

performance of UASN before implementing and deploying

UASN, which involves a lot of cost and time. Among the

different simulation platforms that can be used to simulate

UASN, UnetStack is one of them. It is an effective and well-

known tool that can be used to simulate UASN, and has

obvious advantages. However, the current UnetStack does not

provide a direct function to monitor the energy of the node

during the simulation process, which is very important. This

article describes the design of residues and the framework for

implementing the energy model in UnetStack. In addition,

because of the experimental simulation, it can display the

number of frames sent and received and the energy

consumption of the node over time. In addition, the

implemented energy model framework allows researchers to

design energy-efficient routing protocols and load balancing

methods.

1. Keywords: Energy Model Framework, Network Lifetime,

Energy Depletion, UnetStack.

I. Introduction

As the demand for the development of marine resources

increases, people are becoming more aware of the

application of underwater sensor technology to marine

monitoring. Underwater Acoustic Sensor Network (UASN)

has been widely proposed as a promising solution to support

various marine applications, such as pollution monitoring,

coastal exploration, navigation assistance and mine

identification [1].UASN faces some problems and

challenges, such as limited bandwidth, high propagation

delay, 3D topology, media access control, routing, resource

usage and energy constraints [2].A typical UASN consists

of multiple sensor nodes fixed on the seabed and wirelessly

interconnected with one or more underwater gateways.

Underwater sidewalks are specific nodes equipped with

vertical and horizontal transceivers. The vertical transceiver

is used to send commands and configuration data to the

sensor nodes, and to further obtain the collected data. The

horizontal transceiver is used to relay the monitored data to

the surface station [3].The data is usually linked from the

bottom to the surface station via a multi-hop path within the

sensor network. Lifetime is one of the key factors in any

communication network that uses battery-powered

equipment. The longer the service life, the better the system.

Compared with traditional terrestrial wireless sensor

networks (TWSN), UASN presents severe challenges in

terms of personnel and budget to manually extend the life of

2 | P a g e

the network. Unlike TWSN, UASN nodes consume energy

for various reasons. Some of the reasons for the shortened

network life are the environment, the high energy

consumption of sensor hardware, and improperly designed

protocols. Therefore, compared with WSN, UASN nodes

require more energy, because the distance covered by the

acoustic signal is very long, and more complex signal

technology is implemented. In addition, multipath routing in

UASNs affects the energy of the node when one node is

involved in the transmission of data from another node. In

UASN, nodes are not static like TWSN, but nodes move

Due to the different activities and environments of the

underwater environment, it is usually in an underwater

water flow of 2-3 m/sec [2]. With the exception of surface

nodes (wells), most nodes deployed in UASN are subject to

energy constraints and cannot be charged. However, it is not

possible to use solar energy to charge or periodically replace

discharged batteries in an underwater environment [1].

Simulation of UASN is a common aspect of research

because it facilitates a cost-effective and time-consuming

method of analyzing the operation and performance of

UASN before implementing and deploying UASN. There

are several simulation platforms that can be used to simulate

UASN, but not all are open source. Compared with Aqua-

Sim, DESERT and SUNSET, UnetStack supports a

seamless transition from simulation to actual field

deployment without changing code and design. Therefore,

the compiled binary emulation code can be directly ported

to any modem compatible with UnetStack for field or

laboratory testing without additional cross-compilation [4].

In terms of efficiency, UnetStack supports real-time

operating modes with discrete events. Therefore, UnetStack

has become an ideal choice for researchers to conduct

UASN simulation and then transition to actual field

deployment. UASN's MATLAB and NS-2 simulations are

also very popular in the literature. For MATLAB-based

simulations, most are specific applications. Although

MATLAB can be used for in-depth simulation, it is not

possible to define personalized topology and power models.

In addition, there is no defined definition method to monitor

factors such as packet transmission, loss and collision that

may be of interest to researchers or may even affect the

performance of the submarine network. In addition, in

MATLAB simulation, not all routing protocols are

supported. Another important issue to consider is node

mobility, and there is no ability to simulate node mobility in

this simulator [5]. The latest version available is NS-2.36.

Except for NS-2.30, NS2 does not provide any integrated

software package that supports UASN simulation. The other

simulation scripts NS-2.30 written in the above version are

difficult to execute. Therefore, in NS-2.35 and later, UASN

simulation needs to model all the characteristics and

propagation models of underwater channels [6]. It uses C++

and Python to write scripts easily and supports visualization

[7]. The UAN model has four main components: channel,

PHY, MAC and underwater autonomous driving (AUV)

model. The framework aims to simulate the behavior of

AUV. The communication stack associated with the AUV

can be modified according to simulation requirements.

Generally, the default underwater stack includes a half-

duplex acoustic modem, Aloha MAC protocol, and a

common physical layer.

II. RELATED WORK

This part of the paper starts from various aspects of

underwater communication research and introduces the

importance of implementing an energy model in UnetStack.

In addition, the energy model needs to be implemented in

the UnetStack platform. Mandar Chitre et al. [8], UnetStack

developers introduced a detailed introduction and overview

of the UnetStack architecture. In addition, the author

provides detailed information about the different services

available and a set of predefined agents that provide the

service in his contribution.

2.1 SIGNIFICANCE OF ENERGY MODEL IN UNDERWATER

RESEARCH

As described in Section 1, node energy monitoring in UASN

is very important in all aspects of underwater research, such

as energy consumption analysis, design of routing protocols

based on the following aspects, data collection strategies,

and mitigation of energy gaps and load balancing. This

section describes the importance of energy monitoring in the

above research issues. Han Guangjie, etc. [1] A reverse

routing protocol based on asymmetric link (AREP) is

proposed to ensure bidirectional data communication

between the source node and the destination node. The

author discusses the influence of the directional beam width

of submarine nodes on the communication link. In addition,

the author conducted three case studies on communication

links. These case studies show that for a directional antenna

with a fixed beam width, the change in the relative position

of two geographically adjacent nodes is likely to produce an

asymmetric link. Compare AREP performance with

adaptive feedback based on link state (LAFR) routing.

AREP can shorten the transmission time and increase the

data packet transmission speed in the underwater

environment. Mari Carmen Domingo and Rui Prior [9]

proposed a mathematical analysis of the total energy

consumption of underwater acoustic networks in shallow

and deep water. Relaying or grouping based on routing

protocols for shallow and deep water scenarios has been

studied. Finally, the author concludes that the routing

protocol based on clustering scheme can save more energy

and show better performance in shallow water. Xing

Guanglin others. [10] The UASN was deployed on a named

data network (NDN), and the NDN-based topology explored

the power consumption of the NDN-based UASN under

shallow and deep water conditions. Relay network.

Simulations were carried out in NS-3 and MATLAB to

analyze the results of the energy consumption model of

NDN-based UASN relays in shallow and deep water.

3 | P a g e

MATLAB does not provide any methods for defining

custom topologies or methods for monitoring factors such as

packet transmission, collision, and loss. In the first step, the

sensor nodes are deployed in a rigid graph-based topology,

and the physical data is relayed to the short-distance data

collector through multi-hop acoustic communication. Then,

in the second stage, the AUV periodically accesses the data

collector to recover the data with high-speed communication

in visible light. Simulations were conducted in MATLAB

2016b, and the results show that the topology optimization

scheme can extend the life of the network. The author

proposes an algorithm that can overcome the interference

during the transmission of data packets by defining a unique

data packet retention time for each sensor node. The

variable transmission range of the sensor node is used to

perform position less band gap attenuation. The variable

transmission range of the sensor node is used to perform

band gap attenuation without position. Although these

results prove the performance of the proposed method, they

cannot be used for real-time implementation. Therefore, the

results obtained using UnetStack can be used not only for

simulation, but also for real-time deployment. Therefore, the

UnetStack energy model implemented in this paper proves

its necessity.

2.2. NEED FOR ENERGY MODEL IMPLEMENTATION IN

UNETSTACK

UnetStack, Aqua-Sim, SUNSET and DESERT are some of

these tools, which can be used actively and downloaded for

free. Based on the most popular NS-2 simulator, Aqua-Sim

[13] is a package-level simulation platform. Similar to NS-2,

Aqua-Sim also uses an object-oriented design style and

provides researchers with a wealth of underwater protocols.

However, currently in Aqua-Sim, it does not support a

seamless transition from simulation to field deployment,

because it only focuses on simulation and simulation.

DESERT [14] and SUNSET [15] are simulation, simulation

and experiment tools based on NS-2 and NS2-Miracle.

Similar to DESERT, SUNSET can easily handle simulation,

seamless transition between simulation and field test. In

terms of efficiency, DESERT and SUNSET are extended

from NS-2. For example, both platforms have a main single-

threaded process, and events are scheduled to run in

sequence by a strict event scheduler, which is sensitive to

events of limited duration. On the other hand, UnetStack

supports real-time operation mode with discrete events.

Therefore, the compiled binary simulation code can be

directly ported to any modem compatible with UnetStack

(such as Subnero) for field or laboratory testing without

additional cross-compilation [4]. In addition, in the case of a

transparent transition from simulation to simulation or field

deployment, SUNSET and DESERT are based on Ns-2 and

Ns2-Miracle, which are mainly Ns-2 simulators' caution

events. Therefore, during the transition from discrete event-

based simulation to real-time simulation distributed on these

platforms, major changes to the code and design may be

required, which may cause other problems. For example,

when simulating an application, if it uses centralized global

network information, you must be very careful when

transferring code from the simulation to the application

when simulating the same application. For example, it is

difficult to identify problems related to synchronization of

events in the simulation. For example, it is difficult to

identify problems related to synchronization of events in the

simulation. In addition, in DESERT, the packet conversion

method is not very practical, which may lead to higher

packet conversion overhead [4]. UnetStack uses an agent-

based architecture and supports real-time simulation.

Therefore, the same compiled binary code used in the

simulation can be directly transplanted to the underwater

modem compatible with UnetStack without cross-

compilation for simulation or field test. Therefore,

UnetStack has become an ideal choice for researchers to

conduct experiments. Therefore, it is very important to

implement an energy model that is not currently available in

UnetStack.

III. RESIDUAL ENERGY MODEL FOR UWSN

The main purpose of the proposed work is to provide a

residual energy model framework to deepen the energy-

related algorithms in UnetStack. In this proposed work, the

author Guangjie Hana et al. proposed a residual energy

module. [1] Implemented in UnetStack. The detailed

implementation of the existing energy model framework

described in Section 4 below can be expanded modified

according to the specific needs of researchers or industries.

In this proposed work, the initial energy of the node is

derived for each transmission and reception of the data

packet. As described by the author Guangjie Hana et al. [1]

Equation. (4) Represents the energy consumed during this

period to transmit and receive m-bit data packets.

3.1 ENERGY CONSUMPTION DURING THE TRANSMISSION

OF M-BIT PACKET

The following equation (1) indicates energy consumption

during transmission of m-bit packets.

Etx (m, l) = m ∗ Eelec+ m ∗ Tb ∗ C ∗ H ∗ l ∗ e# (f) ∗ l (1)

Where,

Eelec–the energy consumed by the transmitter

electronic to process one bit of data

l - The transmission distance

Tb- bit duration

H - Water depth

• C - an empirical constant calculated using Equation. (2)

C = 2π∗0:67 ∗10-9:5 (2)

•# (f) - a frequency dependent medium absorption

coefficient (in db/km) calculated using Equation. (3)

(f) = 0:036 ∗ f 3/2 (3)

4 | P a g e

Where, f is frequency of sound wave (in kHz) underwater.

3.2 ENERGY CONSUMPTION DURING THE RECEPTION OF

M-BIT PACKET

The following Equation (4) indicates the energy

consumption during the reception of m-bit packet.

Erx (m, l) = m ∗ Eelec (4)

IV. IMPLEMENTATION OF ENERGY MODEL IN

UNESTACK

This part of the article introduces the implementation of the

residual energy model framework in UnetStack (see section

3). First, an overview of UnetStack is introduced, followed

by a physical proxy and detailed information about the

analog modem used in UWSN simulation. Finally, the

detailed implementation of the residual energy model

framework is given.

4.1 OVERVIEW OF UNETSTACK

UnetStack is part of the Unet project and was developed at

the National University of Singapore’s Acoustic Research

Laboratory in 2004. UnetStack is a proxy-based stack,

which is the foundation of the submarine network simulator

and can be easily used for the deployment and testing of

submarine networks. In the default stack UnetStack, a

collection of software agents representing different layers of

the network stack is provided. These agents provide well-

defined services from all layers of the network stack.

Fig 1: UnetStack architecture

This agent-based approach has produced a flexible network

stack, and its solution is based on multiple layers, so that

software-defined submarine networks can be quickly

designed, simulated, tested, and deployed. In addition,

because the stack is extensible, new agents and services can

be added or existing agents can be replaced to meet

development requirements. As shown in Figure 1,

UnetStack's architecture uses a service-oriented architecture

approach, where the stack defines a set of software agents

that provide well-defined services. The agent plays the same

role as each layer of the traditional network stack. To

achieve this agent-based approach, UnetStack uses the open

source fjage lightweight agent framework (Java and Groovy

agent framework) 5. The fjage framework provides the basic

implementation that forms the basis of UnetStack. In

addition, UnetStack uses fjage to define agents and their

services in its stack. Agents are the basis of UnetStack,

exchanging messages, providing services and implementing

protocols. We can also develop our own agents. UnetStack

provides the UnetAgent base class for this, which

implements most of the basic behaviors required by well-

behaved agents. The agent in UnetStack is an independent

software component that provides well-defined functions

and more flexible interaction with other agents. Agents

interact with each other through messages. The types of

messages used in UnetStack can be divided into request,

reply and notification. There is always an associated request

in response, and no notification is requested. The message

does not always have to be sent to a specific agent, but it can

also be published on the topic. Any agent subscribing to this

topic will receive broadcast messages about this topic.

Unsolicited notifications are usually sent on topics

associated with the agent; because the agent does not know

in advance which other agent is interested in the

notification. A well-integrated set of fully integrated

requests, responses and notifications are called services. If

the agent provides the service, it will announce the service

by saving it to the "directory". Services can define

functions, and these functions represent optional functions

that the service can choose to implement. Agents release this

function so that other agents can interrogate [8]. The main

services defined by UnetStack are physical services,

datagram services, MAC services, routing and routing

maintenance services, transmission services, remote access

services, telemetry services, the service links and node

information services [8].

4.2 RESIDUAL ENERGY MODEL IN UNETSTACK

In the implementation of energy models, the

HalfDuplexModem class is extended by implementing a

class called EnergyModelModem, which adds energy

monitoring functions. The hierarchy of extension classes is

shown in Figure 2 and Algo. Figure 3 shows the

implementation implemented in the extended

EnergyModelModem class. The extended

EnergyModelModem class should be able to register to

handle incoming datagram requests and notify it of physical

and datagram services. In addition, the expansion modem

must monitor each transmission and reception to calculate

the energy consumption of the node. To this end, the

5 | P a g e

extended modem agent must monitor two physical agent

notification messages, which are the frame transmission

notification and the received frame notification of the base

class when processing the transmission and reception of

node data separately Send these notification messages. To

send these messages, the HalfDuplexModem class calls

send() defined in the fjage agent and passes the message

instance as a parameter, because HalfDuplexModem is an

extension of the UnitAgent class, and UnitAgent is extended

from the Agent class of fjage, from the top of the hierarchy

Call "send()" in the Agent class.

Therefore, in the extended EnergyModelModem that

reaches the last level of this hierarchy, this "send()" will be

overwritten and defined to check whether the message

instance received as a parameter is a TxFrameNtf or

RxFrameNtf message instance. The energy consumed for

this is if the parameter is For the instance of

TxFrameNtfmessage, the data transmission

is calculated; if the parameter is an RxFrameNtf message,

the received data is calculated, because the design of the

energy model that we use to calculate the transmission

energy needs to calculate the size of the transmission

energy.

Fig 2: UnetStack: Energy model class diagram

Data distance between the sending and receiving nodes. We

need to obtain the data sent from the node and the location

of the node. These are the data transmission nodes retrieved

by the datagram request message generated when processing

the request.

Finally, in the simulation, the EnergyModelModem

customized for monitoring the remaining energy was added

by configuring the modem parameters, so it was added as a

physical agent to the container for the nodes running in the

simulation.

Table 1 lists the parameters used in the energy model

implemented with reference to equations (1) and (4) in

Section 3. Table 2 gives the other two parameters, water

depth (H) and transmission distance (l), depending on the

simulation.

V. RESULTS AND ANALYSIS

This section of the article introduces the simulation

topology, parameters and different schemes for

verifying/demonstrating the residual energy model

implemented in UnetStack. In addition, the topology was

simulated for duration of 1 minute. (The first case) 1 hour

(Case 2). In addition, case I and case II were simulated, with

or without receipt (ACK). The successful implementation of

the remaining energy model in UnetStack is illustrated by

parameters, such as the total number of data packets

sent/sent and received by all active nodes and their relative

energy consumption. Case-I provides in-depth simulation of

the implemented modules, while Case-II provides the

robustness of the implemented modules with detailed

simulation. ACK hop-to-hop simulation ensures reliable

6 | P a g e

package delivery. In the UnetStack simulation, the

RewableLink type uwlink agent available in the default

stack provides link layer services with

segmentation/reassembly and reliability at the link level.

When using uwlink to send data, you can activate hop-by-

hop ACK to achieve reliable transmission. This can be done

by setting the reliability field to true. If the router agent is

used to send data, uwlink is the default link agent. When the

ACK skip function is available by default, or when adding a

route, you can explicitly control it using the reliability field

set to true or false. Router agents provide routing services

based on routing tables.

5.1 SIMULATION TOPOLOGY AND PARAMETERS

Fig 3: Simulation topology

This section introduces the simulation topology and its

parameters as well as the values related to the residual

energy model implemented in UnetStack. Figure 3 shows

the simulation topology consisting of 7 nodes. As shown in

Figure 3, circles represent nodes, and dotted lines connect

nodes as neighbors to each other. In addition, the solid line

with arrows indicates the data flow, and the value next to the

line indicates the Euclidean distance (l) between the

connected nodes. Table 2 lists the simulation parameters and

the parameters configured for the energy models H and l

with reference to equations (1) and (4) in Section 3.

5.2 CASE-I:

This section introduces topology simulation, as shown in

Figure 2. The duration of 1 minute is 3, with and without

ACK. In addition, node 5 and node 1 are configured as a

source and a sink, respectively.

Total packets sent/forwarded: The multi-line diagram in

Figure 4 illustrates the total number of packets sent/sent by

all nodes with hop-by-hop ACKs defined in the simulation.

Since Node-1 is the receiver, it only sends ACK packets.

The data packet sent by node 4 includes the data packet to

be sent to node 3 and the ACK is returned to node 5.

Similarly, the data packets sent from nodes 3 and -2 include

the data packets sent to nodes 2 and -1, respectively, and the

returned ACK.

 Fig 4: Total packets sent/forwarded with ACK

Eventually, Node-5, which is a leaf node, sent its own data

packet. As shown in Figure 4, each mark on the graph

represents an event sent by data packet transmission or by

receiving confirmation, except for node 5, which only

occurs in the sent data packet and node 1 ACK. In addition,

as shown in Figure 4, node 5 sends 5 data packets,

Therefore, 10 sent events (5 packets + 5 ACKs) are recorded

at nodes 4 and -3. On node 2, 9 transmission events (5

packets + 4 ACKs) were recorded, so 4 transmission ACKs

were recorded on node 1. In addition, in Figure 4, you can

also see the delay in sending packets and ACK sending

events.

 Fig 5: Total packets sent/forwarded without ACK

Figure 5 illustrates the total number of data packets sent by

all nodes with no ACK defined in the simulation. We can

notice that node 1 has no graph, because it is about the

receiving node, and here it does not send ACK. The data

packet sent by node 4 includes the data packet to be sent to

node 3. Similarly, packets sent from nodes 3 and -2 include

packets sent to nodes 2 and -1, respectively. Eventually,

7 | P a g e

Node-5, which is a leaf node, sent its own data packet. As

shown in FIG. 5 without ACK, the number of data packets

sent by node 5 corresponds to the number of data packets

transmitted by intermediate nodes 4 and -3. At node 2, the

number of retransmitted data packets is one less than the

previous node due to the end of the simulation. The

numerical values shown in Figures 4 and 5 prove that the

energy model implemented in UnetStack is correct for the

normal operation of packet transmission/retransmission

events.

Total packets received: The multi-line diagram in Figure 6

illustrates the total number of packets received by all nodes

with hop-by-hop ACK. Since node 1 is the receiver, it only

receives data packets sent by node 2. Leaf node Node-5 only

receives the ACK sent by node 4. The remaining nodes

receive the previous hop and ACK sent from the next hop.

Fig 6: Total packets received with ACK

As shown in FIG. 6, each mark on the figure indicates that a

packet or ACK event is received, except for node 5, which

occurs only in the received ACK and the received packet of

node-1. In addition, as shown in Figure 6, node 5 sent 5

packets, so nodes 4 and -3 recorded 10 reception events (5

packets + 5 ACKs). At node 2, 8 received events (4 packets

+ 4 ACKs) are recorded. Therefore, at node 1, 4 received

packets are recorded. In addition, the data packets sent and

received can be mapped in Figures 4 and 6, respectively.

Figure 7 illustrates the total number of packets received by

all unacknowledged nodes. It should be noted that since it is

the source node and does not receive any ACK, there is no

graph for node 5. Node 1 on the receiving side only receives

data packets transmitted by node 2. The remaining nodes

receive the data packet sent from the previous node. As

shown in Figure 7 without ACK, the number of data packets

received by node 1 corresponds to the number of data

packets transmitted by intermediate node 2 (Figure 5). The

same is true for Node-3 and -4.

 Fig 7: Total packets received without ACK

The values shown in Figures 6 and 7 demonstrate the correct

function of the energy model implemented in UnetStack for

the events received by the packet.

Depletion of node energy: This section describes the

successful implementation of the main objectives of the

proposed work.

 Fig 8: Energy depletion for all active nodes with ACK

The multi-line diagrams shown in Figures 8 and 9 represent

the energy consumption of all active nodes, which are the

result of all transmissions and receptions performed by the

nodes. The figure does not show the energy consumption of

nodes 6 and -7, because these nodes do not send or receive

data packets (Figures 4, 5, 6 and 7), but can detect the

transmission (Figure 3) the energy remains unchanged. The

mark on the graph indicates that a send or receive event has

occurred on the node. Figure 8 shows the energy

consumption curve of ACK hop-to-hop nodes. We can see

from the figure that node 1 (ie the receiver) consumes the

least energy. Since node 1 does not participate in forwarding

the data packet to the next hop, it receives the data packet

from node 2 and returns the ACK of the received data

8 | P a g e

packet to node 2. Then, node 5 as a source has less energy

consumption because it only sends the data packet to the

next hop, node 4, and receives ACK from node 4. In

addition, nodes -2, -3, and -4, which are intermediate nodes,

have higher energy consumption because these nodes

receive data packets from the previous hop, return ACKs

from the previous hop, and transmit the data packets to the

next hop and from the next One hop to receive ACK. As

shown in FIG. 8, the number of marks on a single node

graph is the sum of the number of marks on each node graph

in FIGS. 4 and 6. In addition, it can be seen in FIG. 8 that

energy consumption for packet transmission = forward

packet> ACK transmission> packet reception> ACK

reception.

Fig 9: Energy depletion for all active nodes without ACK

The graph in Figure 9 shows the node energy consumption

without ACK. It can be seen that, similar to the graph in

Figure 8, node 1 has the lowest energy consumption because

it only participates in receiving data packets. Node 5 has run

out of energy and cannot send its own data packets. The

other nodes lose the energy to receive the data packet in the

previous hop and transmit the data packet to the next hop.

Similar to FIG. 8, the total number of marks can be checked

between FIG. 9 and FIGS. 5 and 7. The values shown in

Figures 8 and 9 demonstrate the correct function of the

energy model implemented in UnetStack during the

transmission, reception, transmission, and ACK

transmission and reception of data packets.

Fig 10: Total packets sent/forwarded with ACK

5.2 CASE-II: EXTENDED SIMULATION AND

ANALYSIS

This section introduces extensive topology simulation, as

shown in Figure 2. 3. The duration is 1 hour, with and

without ACK. In addition, node 5 and node 1 are configured

as a source and a sink, respectively. Compared with case I,

in case II, the initial energy of the node is configured to

0.5J.

Total packets sent/forwarded: The multi-line diagram in

Figure 10 illustrates the total number of data packets sent by

all nodes through a hop-by-hop ACK. Since node 1 is the

receiver, it only sends ACKs for the packets received from

node 2. The data packets sent from nodes 4, -3 and -2

include the data packet sent at its next hop and the

acknowledgment sent at its previous hop. As shown in FIG.

10, since node 1 only sends an ACK, node 1 sends the least

number of data packets, which depends on the number of

data packets it receives from node 2. The number of data

packets sent by node 5 is higher than that of node 1, but less

than other nodes. Since node 5 must only send its own data

packets, or retransmit some data packets when no ACK is

received from node 4. However, for the intermediate nodes

(nodes 2, -3 and -4), they have the same task of transmitting

the packet at the next hop and sending the ACK to its

previous hop. The number of packets sent is different

because it depends on the number of packets they transmit

or retransmit and the number of ACKs they send, which in

turn depends on the number of packets they receive. . In this

case, in FIG. 10, the node 4 has the maximum number of

data packets sent.

9 | P a g e

Fig 11: Total packets sent/forwarded without ACK

Figure 11 shows the total number of packets sent by all

nodes without ACK. Here, in addition to node 1, sending

data packets involves the source 5 nodes, and forwarding

data packets involves the intermediate nodes (nodes 4, -3

and -2). Since all data packets sent from node 5 are

transmitted through each intermediate node, the power

consumption of all these nodes is the same. As shown in

Figure 11, node-1 (that is, the receiving node) does not send

any data packets. The number of data packets sent by

intermediate nodes (nodes 4, -3 and -2) is the same as the

data packets sent from node 5. Therefore, in FIG. 11, the

graphs of these nodes overlap.

Total packets received:

 Fig 12: Total packets received with ACK

The multi-line diagram in Figure 12 illustrates the total

number of packets received by all nodes with hop-by-hop

ACK. Since node 1 is the receiver, it only receives data

packets sent by node 2. The node 5 as the source receives

only the ACK sent by the node 4. The remaining nodes

receive the previous hop and ACK sent from the next hop.

As shown in Figure 12, Node 1 and Node 5 have a similar

number of packets and acknowledgments. For intermediate

nodes (nodes 4, -3 and -2), the number of packets received

depends on the number of packets transmitted to them, the

packets processed at that node, and the packets forwarded.

In this case, in Figure 12, node 4 receives the largest number

of packets, then nodes 3 and -2.

 Fig 13: Total packets received without ACK

As shown in FIG. 13, the source node 5 has not received any

data packet. Intermediate nodes (nodes 4, -3 and -2) and

node 1 receive an equal number of packets sent from their

respective previous hops. Therefore, in FIG. 13, it can be

observed that the number of data packets received at these

nodes overlap.

Depletion of node energy: The multi-line diagrams in

Figures 14 and 15 illustrate the timeout energy consumption

of all active nodes. Similar to the graph shown in FIG. 8,

FIG. 14 here shows a graph of the energy consumption of

nodes with ACK hop-to-hop. One well Node-1 has the

lowest energy consumption. Since node 1 does not

participate in the next hop data packet transmission, it only

receives the data packet transmitted by node 2 and returns

the ACK to node 2. Nodes 4 and -3 have higher

consumption because these nodes have the highest number

of send and receive events. In addition, the source Node-5

has higher consumption than Node-2 in sending and

forwarding data packets and receiving ACK.

10 | P a g e

 Fig 14: Energy depletion for all active nodes with ACK

The graphs in FIGS. 10 and 12 can be used to check the

power consumption shown in FIG. 14 to understand the

power consumption during transmission, transmission,

retransmission, ACK transmission, and reception of ACK

packets. Figure 15 shows the energy consumption curve of

the node without ACK. Here, since node 1 is the receiver, it

only receives the data packet sent by node 2. Therefore, it

has the lowest energy consumption. Intermediate nodes

(nodes 4, -3 and -2) overlap because the energy

consumption through these nodes is the same.

 Fig 15: Energy depletion for all active nodes without ACK

Since these nodes are involved in sending and receiving data

packets, all data packets are also transmitted without losing

data packets due to collisions. Node 5 as the source only

participates in sending data packets to its next hop node

4.Since the energy consumed by sending is always greater

than the energy consumed by receiving, its depletion rate is

higher than node 1 and lower than other intermediate nodes.

The graphs in FIGS. 11 and 13 can be used to check the

power loss shown in FIG. 15 to see the power loss during

the transmission, transmission, and reception of data

packets.

VI. CONCLUSION AND FUTURE WORK

UnetStack is one of the most commonly used submarine

network simulation tools. The unavailability of its residual

energy model has prompted people to design and implement

it. The implemented module extends UnetStack's existing

HalfDuplexModem implementation for personalized

calculation of remaining energy. Using basic and

comprehensive simulations, a residual energy model for the

number of packets sent and received and the energy

consumption of all nodes is demonstrated. Taking into

account other parameters of the submarine network (this is

the future scope of this work), the energy calculation can

still be performed very accurately.

 References

[1] G. Han, L. Liu, N. Bao, J. Jiang, W. Zhang, J. J.

Rodrigues, and AREP: Reverse routing protocol

based on asymmetric links for underwater acoustic

sensor networks, Journal of Network and Computer

Applications 92 (2017).

[2] K. M. Awan, P. A. Shah, K. Iqbal, S. Gillani, W.

Ahmad, Y. Nam, Underwater wireless sensor

networks: Recalling recent problems and

challenges, "Wireless Communications and Mobile

Computing 2019".

[3] M. Jouhari, K. Ibrahimi, H. Tembine, J. Ben-

Othman, Underwater wireless sensor networks:

Survey on enabling technologies, positioning

protocols and the Internet of underwater objects,

IEEE Access 7 (2019).

[4] H. Luo, K. Wu, R. Ruby, F. Hong, Z. Guo, L. M.

Ni, Simulation and experimentation platforms for

underwater acoustic sensor networks:

Advancements and challenges, ACM Computing

Surveys (CSUR) 50 (2) (2017) 28.

[5] Sehgal, Analysis & simulation of the deep sea

acoustic channel for sensor

networks.

[6] A. P. Das, S. M. Thampi, Simulation tools for

underwater sensor networks:

a survey, Simulation 8 (4).

[7] J. Fall, The ns manual, http://www. Isi.

Edu/nsnam/ns/ns-documentation.

[8] M. Chitre, R. Bhatnagar, W.-S. Soh, Unetstack: An

agent-based softwarestack and simulator for

underwater networks, in: 2014 Oceans-St. John’s,

IEEE, 2014, pp. 1-10.

11 | P a g e

[9] M. C. Domingo, R. Prior, Energy analysis of

routing protocols for underwater wireless sensor

networks, Computer communications 31 (6)

(2008)1227-1238.

[10] G. Xing, Y. Chen, L. He, W. Su, R. Hou, W. Li, C.

Zhang, X. Chen, Energy consumption in NDN's

relay underwater acoustic sensor network, IEEE

Access 7 (2019) 42694-42702.

[11] to collect energy saving data on the underwater

acoustic sensor network, IEEE Systems Journal

12(4) (2018) 3519-3530.

[12] A. Khan, I. Ahmedy, M. Anisi, N. Javaid, I. Ali, N.

Khan, M. Alsaqer, H. Mahmood, Routing to

minimize interference and energy gaps without

localizing the subsea wireless sensor network,

Senseurs 18(1) (2018)165.

[13] P. Xie, Z. Zhou, Z. Peng, H. Yan, T. Hu, J.-H. Cui,

Z. Shi, Y. Fei, S. Zhou, and Aqua-sim: For ns-2

based simulators for underwater sensor networks,

please see: OCEANS 2009, IEEE, 2009, pp. 1-7.

[14] R. Masiero, S. Azad, F. Favaro, M. Petrani, G.

Toso, F. Guerra, P. Casari, M. Zorzi, Desert

underwater: A framework based on ns-miracle to

design, simulate, simulate and implement

submarine network protocol test bench, see: 2012

Oceans-Yeosu, IEEE, 2012, pp. 1-10.

