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Speech separation is an important task of separating a target speech from the mixture signals. Speaker-
independent multi-talker speech separation is a challenging task due to unpredictability of the target and
interfering speech in the target-interference mixtures. Conventionally, speech separation is used as a sig-
nal processing problem, but recently it is formulated as a deep learning problem and discriminative pat-
terns of the speech are learned from the training data. In this paper, we consider the ideal binary mask
(IBM) as a supervised binary classification training-target by using fully connected deep neural networks
(DNN) for single-channel speaker-independent multi-talker speech separation. The train DNNs is used to
estimate IBM training-target. The mean square error (MSE) is used as an objective cost function. Standard
backpropagation and Monte-Carlo dropout regularization approaches are used for better generalization
and overfitting during training. The estimated training-target is applied to the mixtures to obtain the sep-
arated target speech. We have addressed the over-smoothing problem and performed equalization of
spectral variances to match the estimated and clean speech features. Our experimental results in various
evaluating conditions report that the proposed method outperformed the competing methods in terms of
the Perceptual Evaluation of Speech Quality (PESQ), Segmental SNR (SNRSeg), Short-time objective intel-
ligibility (STOI), normalized Frequency weighted SNRSeg (nFwSNRSeg) and HIT-FA rates.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Listening to the individuals in the crowded conditions fre-
quently take place in presence of the interfering speakers. These
conditions require the ability of an individual to separate a speech
of interest from the mixture signals. Many proposed methods have
demonstrated considerable performance gain on the separation
task when prior knowledge of the speaker in mixtures is provided
[1,2]. This, however, is still a challenging task when no prior
knowledge about the speakers is given, and this particular problem
is known as speaker-independent multi-talker speech separation.
Humans are exceptionally adept at this task, however, this is a
complicated task to model and emulate algorithmically. Even so,
this challenge ought to be cracked to accomplish robust speech
processing tasks. For instance, the performances of the existing
automatic speech recognition (ASR) systems have achieved similar
results to the humans in noise-free situations [3], these systems,
however, are incapable to perform well in crowded conditions,
and are less robust in the presence of interfering speakers. The task
becomes even more challenging when the separation of all sources
in a mixture is essential, such as meeting transcription. In multi-
microphone conditions the beamforming algorithms can improve
the performance [4,5]; however, the problem of the speech separa-
tion remains challenging when single-microphone is available.

Before emergence of the deep learning; approaches based on
the statistical, clustering, and factorization have been used for
the separation task. In statistical approaches, the target speech sig-
nals are modeled with probability distributions and the mixture
signals are assumed to be statistically independent from target
speech. Maximum likelihood estimation methods are usually
applied based on some known statistical distributions of the target.
In clustering approaches, the characteristics of the speakers are
estimated from the observation and used to separate a target signal
from the mixtures. Approaches such as computational auditory
scene analysis (CASA) [6,7] fall into this set. Research in CASA as
supervised speech separation has gained much attention [8-11].
IBM is a major computational goal of CASA [10], which indicates
whether the target-speech dominates a T-F unit in time–frequency
representation of mixture signals. With IBM as a major computa-
tional goal, the speech separation becomes a binary classification
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approach, a basic framework of supervised learning. In [12], a clas-
sifier is trained to estimate IBM for binaural speech separation. A
maximum a posteriori (MAP) classifier is trained based on the
interaural-time and interaural-intensity differences binaural fea-
tures to classify the T-F bins as speech-dominant or noise-
dominant. This proposed system provided large gain in the speech
intelligibility for matched training and testing situations. In [13], a
Bayesian classifier is applied to estimate and eliminate the noise-
dominant T-F bins for the robust ASR. Sub-band multilayer percep-
trons (MLPs) are trained in [14] to classify T-F bins as speech-
dominant or noise-dominant during grouping step of CASA-based
speech separation. Gaussian mixture model (GMM) is applied to
estimate the IBM in Mel-spectral domain [15]. At low SNRs and
matched training–testing noise segments, these methods have
been shown to improve the speech intelligibility for normal-
hearing listeners. Factorization approaches, for example, NMF
[16-18] formulated the separation as a matrix factorization prob-
lem in which the time–frequency representations of the mixtures
are factorized into basis signals and activations. The activations
learned for all basis signals are used to reconstruct target sources.

Recently, deep learning has made significant progress in source
separation, specifically; deep neural networks have been success-
fully applied in the speech enhancement and speech separation
[19-42] with considerably improved performance compared to
the traditional approaches. The typical model for neural networks
is to estimate time–frequency masks of the sources given the
time–frequency representation of the mixtures (multiple speak-
ers). Such model formulates the separation as a supervised regres-
sion problem and is important for supervised speech separation.
Several types of masks and objective functions have been pro-
posed, such as, phase-aware and binary masks that have been
studied in [20,21]. DNNs have been shown remarkable success in
the supervised tasks, such as, image classification, Automatic
Speech Recognition (ASR) and speech enhancement [19-22].

1.1. Related work

A limited work relating supervised single-channel learning-
based speaker-independent multi-talker speech separation exists
in literature and [25-30] have addressed this task. To learn about
the training labels, instant energy was used, which improved label
permutation and facilitated unknown speaker separation [25].
Two-talker decoder is used to estimate and correlate the speaker
and speech jointly. A penalty for speaker switching was estimated
from the mixed-speech energy pattern change. The system
achieved outperformed the state-of-the-art IBM by 2.8% absolute
with fewer assumptions. Though, this approach worked well for
mixtures of two-speakers, however, underperformed in many
speakers’ mixtures. DNN based Binary Mask estimation is proposed
in [26] by considering audiovisual model for speaker independent
separation. Hybrid DNN structure is exploited to leverage the com-
plementary strengths of a stacked long short term memory (LSTM)
and convolution LSTM network. The comparative simulation
results in terms of speech quality and intelligibility demonstrate
significant performance improvement for both speaker dependent
and independent scenarios. An iterative DNN is proposed in [27] to
perform the task of speaker-independent speech separation.
Besides the commonly-used spectral features, the DNN also takes
non-linearly wrapped spatial features as input, which is refined
iteratively using parameter estimated from the DNN output via a
feedback loop. DNN based method for attacking the single-
channel multi-talker speech recognition problem is addressed in
[28]. A Deep Attractor Network is proposed in [29], which creates
attractor points in embedding spaces and attracts T-F bins related
to the target speaker. The training process in this approach is sim-
ilar to expectation–maximization (EM) principle. An attractor, a
centroid of the speaker, in the embedding space was created to
represent speakers. The time–frequency embeddings of speakers
were then enforced to cluster around the attractor which is used
to decide the time–frequency assignment of the speaker. The
objective function for the network was standard signal reconstruc-
tion error which enables end-to-end maneuver during training and
testing. Two deep learning approaches; deep clustering [34] and
permutation invariant training (PIT) [30,35-37] have been pro-
posed recently to resolve the multi-talker speech separation prob-
lem. PIT, however, solved the label permutation during training;
but did not successfully solve the permutation during inference.
Deep clustering is proposed in [38], deep Recurrent Neural Net-
works (DRNNs) are used to project the speech mixtures into
embedding spaces, where T-F bins belonging to identical speakers
form the clusters. Clustering algorithms are used then to classify
the clusters in these embedding spaces. The T-F bins belonging
to the identical clusters are grouped and a binary mask is esti-
mated, which is used to separate the speakers from mixtures.
The Utterance-level PIT (uPIT), a deep-learning approach, was pro-
posed in [30] to solve speaker-independent multi-talker speech
separation and extended the PIT approach with an utterance-
level cost function. Recurrent neural networks (RNNs) were
engaged to minimize the separation error at utterance-level. The
uPIT was used for speaker independent multi-talker speech separa-
tion and denoising in [37]. Bi-directional LSTM RNNs were trained
using uPIT. A similar approach using PIT was also proposed in [35].
A constrained uPIT (cuPIT) was proposed by computing a weighted
MSE loss utilizing the dynamic information. The loss function
ensured the temporal continuity of output frames with the identi-
cal speakers. The model was extended by adding an additional Grid
LSTM layer to learn temporal and spectral patterns over input mag-
nitude spectrum concurrently.

In this paper, the IBM is estimated by using DNN as a supervised
binary classifier for the single-channel speaker-independent multi-
talker speech separation. DNNs are trained which are based on the
MSE cost function, standard backpropagation and Monte-Carlo
dropout regularization. Hinton et al. [43,44] first suggested the
dropout regularization concept to undermine overfitting in DNN
training procedure. The dropout regularization discards inactive
weights in training. Gal and Ghahramani [45] showed a theoretical
relation between dropout regularization and estimate the infer-
ence in a Gaussian way and suggested the method of utilizing
dropout during inference. Kendall et al. [46] showed that by
enabling dropout during training and averaging the results of mul-
tiple stochastic forward passes, the testing show improvement and
named as Monte-Carlo dropout regularization. In [47] also showed
model uncertainty estimation from Monte-Carlo samples. Given
these obvious improvements, we have used Monte-Carlo dropout
regularization in our separation method. The over-smoothing
problem is addressed and spectral variance equalization is per-
formed to match the estimated and underlying clean speech to
obtain good quality and intelligible speech. The main contributions
of the proposed method are summarized as follows. (i): First, bin-
ary classification of the time–frequency units is achieved by using
DNN structures for the single-channel speaker-independent multi-
talker speech separation. (ii): Second, Monte-Carlo dropout regu-
larization is used during training in order to achieve better gener-
alization and to solve the over fitting of training data. (iii): Third,
the over-smoothness problem is alleviated by adopting
frequency-independent spectral variance equalization to match
the input and output speech.

The remaining paper is organized as. The proposed speech sep-
aration method is presented in the Section 2. Experimental settings
are presented in the Section 3. The results and analysis are pre-
sented in Section 4. Finally, the summary and conclusions are pre-
sented in Section 5.
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2. Speech separation using deep neural networks

To explain the process of supervised deep learning to solve the
problem of the speaker-independent multi-talker speech separa-
tion, we define the general problem of single-channel speech sep-
aration. The problem of speaker-independent multi-talker speech
separation is defined by estimating all N speakers z1(t), z2(t), . . ..,
zN(t), for a given the mixture y(t) as:

yðtÞ ¼
XN
j¼1

zjðtÞ ð1Þ

In time–frequency representation, the magnitude spectrums Y
(x,t) is equal to the sum of magnitude spectrums of all sources,
and is defined as:

Yðx; tÞ ¼
XN
j¼1

Zjðx; tÞ ð2Þ

The real-valued magnitude spectrums are used as input to the
speech separation systems and time–frequency masks for target
sources are estimated. The magnitude spectrum |Y(x,t)| denotes
the feature vectors Y 2 R1xxs, where x is frequency and s is time
index. The magnitude spectrums and corresponding time–fre-
quency masks for sources are vectors, representing as: zj 2 R1xxs

and mj 2 R1xxs. The estimated magnitude spectrums ẑj 2 R1xxs are
defined as:

ẑj ¼ Y �mj; for
XN
j¼1

mj ð3Þ

Where�denotes the element-wise multiplication and 1 2 R1xxs

indicates an all-one vector. As shown in Fig. 1, the proposed
method consists of the training phase and the separation phase.
First, the clean and mixture speech are segmented, windowed
and STFT is computed. Then complementary features are extracted
from the utterances. These features are used to train the DNN. In
the separation phase, the same method is used to extract the com-
plementary features of the mixture speech. These features are fed
to train DNN to estimate IBM. The estimated IBM is applied to mag-
nitude spectrum of the mixture speech to obtain the target magni-
tude spectrum as:

Ẑðx; tÞ ¼ M̂ðx; tÞ � Yðx; tÞ ð4Þ
WhereM̂ðx; tÞand Ẑðx; tÞ denotes the estimated binary mask

and spectral magnitude of the target speech. It is observed in the
output estimated speech that the over-smoothing produces a muf-
Fig. 1. Block Diagram spee
fled effect when compared to the clean version of the estimated
speech. To mitigate this problem, frequency-independent spectral
equalization is performed as a post-processing step in order to
equalize spectral variances. Finally, during waveform reconstruc-
tion, the separated speech is reconstructed using phase of the mix-
ture speech.
2.1. Binary classification based training target and training criterion

The mask estimation is a vital in the proposed method to esti-
mate the magnitude spectrum of clean speech. We have trained
DNN structures, which are formulated on binary classification
training-target, comprised of IBM. IBM is a time–frequency repre-
sentation constructs from clean speech and noise signals. For all
time–frequency units, if the SNR ratio is larger than a local SNR cri-
terion (LC), the time–frequency unit is called target-dominant and
the resultant element is set to binary 1. If not, element is set to bin-
ary 0 and is called as the interference-dominant unit. IBM is
defined as:

Mðx; tÞ ¼ 1; if SNRðx; tÞ P LCðdBÞ
0; if SNRðx; tÞ < LCðdBÞ

�
ð5Þ

Where SNR shows signal-to-noise ratio, t, and x denotes time
and frequency index whereas LC denotes the local criterion. The
LC is usually fixed at 0 dB. The mean square error (MSE) criterion
is used as an objective cost function during training the deep net-
work, defined as:

CMSE ¼ 1
TF

XT
t¼1

XF
f¼1

M̂ðx; tÞ �Mðx; tÞ
��� ���

2

ð6Þ
2.2. Proposed DNN framework

The proposed DNN framework is depicted in Fig. 1 which con-
sists of the feature extraction, training, testing (separation), post-
processing and waveform reconstruction, respectively. To reduce
the complexity of the proposed separation method, we have
adopted two fundamental approaches. (a) Same complementary
features are utilized during training and testing phase. (b) Since
same complementary features are used; the input and hidden lay-
ers have the same number of neurons. The neurons in output layer
are different and fixed to 512 in the proposed method. The details
of the simulation parameters are presented in Table 1.
ch separation method.



Table 1
Details of Simulation Parameters.

S. No. Parameter Description Parameter Value

1 Feature Set Dimension 256
2 Hidden Layers 3
3 Hidden Neurons 3072
4 Input Neurons 1024
5 Output Neurons 512
6 Momentum Term 0.4 and 0.8
7 Number of Epochs 100
8 Frame Length 20 msec
9 Frame Shift 10 msec
10 Scaling Factor 0.0010
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2.2.1. Feature extraction
A set of complementary acoustic features is extracted from the

input speech at frame level. Acoustic features are extracted with
frame length set to 20 ms and the frame shift is set to 10 ms. The
features set includes: Multi-resolution cochleagram (MRCG) [39],
13-dimension relative spectral transformed perceptual linear pre-
diction coefficients (RASTA-PLP), 31-dimension Mel-frequency
cepstral coefficients (MFCC), 64-dimension Gammatone filter ener-
gies (GFE) and 51-dimension amplitude modulation spectrogram
(AMS). All the complementary features are concatenated with cor-
responding delta and double delta features. Finally, a set of 256-
dimensional complementary features are obtained which is used
to train and test the DNN. All the feature vectors are normalized
to the zero-mean and unit-variance.
2.2.2. DNN architecture
DNN is a selective learning machine and has shown to perform

well in the source separation [37,38]. The DNN training framework
contains five layers; input layer, three hidden layers, and output
layer, respectively, shown in Fig. 2. The size of the input layer is
1024 neurons, i.e., 256*4 = 1024, including 256 dimensional fea-
tures and 4 frames window. The hidden layers contain 1024 neu-
rons and used the rectified linear unit (ReLU) activation function.
To select the activation function in the hidden layers based on
the performance for the proposed method, preliminary experi-
ments are conducted. Fig. 3 shows PESQ and STOI scores for DNN
using two activation functions in the hidden layers, namely ReLU
Fig. 2. Deep Neural Network Training.
and sigmoid (Sig) with different global SNRs. We note that consis-
tent high PESQ and STOI values are obtained for the ReLU activa-
tion function. As a result, the ReLU activation function is used in
hidden layers. The output layer consists of 512 neurons and the
sigmoid activation function. The standard backpropagation and
Monte-Carlo (MC) dropout regularization [45,47] are used to train
DNN. The adaptive gradient descent algorithm [49] with a momen-
tum parameter b is used to optimize DNN. The batch size is fixed to
128. The scaling factor for the adaptive stochastic gradient descent
is set to 0.0010 and the learning rate is minimized linearly from
0.06 to 0.002.Total of 100 epochs is used during the process. For
the first few epochs, the b is fixed at 0.4 and the rate is increased
to 0.8 for remaining epochs. The MSE cost function is used in train-
ing. The cost optimization curves at epochs for DNNs are demon-
strated in Fig. 4.

2.2.3. DNN speech separation
During separation phase, the complementary features of the

utterances mixed with different mixtures are used as the testing
features and the IBM is used as a training-target. The IBM is the
computational goal of computational auditory scene analysis
(CASA) and has achieved good results [10]. The IBM is used as a
binary classification approach and DNN is used to predict the labels
of time–frequency units. The estimate of the target magnitude
spectrum is achieved by multiplying the estimated mask with
the mixture magnitude spectrums. The time-domain speech is
recovered by computing an inverse STFT of the estimated magni-
tude spectrum Ẑj using phase of the mixture.

2.2.4. Post processing
The over-smoothness in output speech generates a muffled

effect. To mitigate this problem, frequency-independent spectral
variance equalization is adopted as a post-processing step to match
the features of output and clean speech for improving speech qual-
ity and intelligibility. According to study of Xu et al. [48],
frequency-independent spectral variance equalization performs
better that frequency-dependent spectral variance equalization.
Also, it is verified that such variance equalization can greatly
improve the subjective scores [50]. In frequency-independent
spectral variance equalization, the variances of the estimated
speech VEST and the clean speech VCLEAN are defined as:

VESTðdÞ ¼ 1
N

XN
n¼1

ẐðdÞ � 1
N

XN
n¼1

ẐðdÞ
 !2

ð7Þ

VCLEANðdÞ ¼ 1
N

XN
n¼1

ZðdÞ � 1
N

XN
n¼1

ZðdÞ
 !2

ð8Þ

Where ẐðdÞ is the dth element of DNN output vectors at nth

frame and N is the total number of frames in training set. The vari-
ance of the estimated and clean speech in various frequency bands
is illustrated in Fig. 5. The variances of the estimated speech utter-
ance are smaller than clean speech; this indicates that the esti-
mated speech spectra are smoothed. Furthermore, in low SNR
conditions, the over-smoothing phenomenon becomes worst and
the formant peaks are suppressed. The over-smoothing in the
high-frequency bands leads to a muffling speech. Fig. 6 shows
spectrograms of speech degraded by babble noise at 0 dB. A sub-
stantial over-smoothing can be noticed. The formant peaks
between 2000 and 4000 Hz are suppressed. Based on (7) and (8),
the equalization factor l(d) is used to control the over-
smoothing problem, defined as:

lðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VESTðdÞ
VCLEANðdÞ

s
ð9Þ



Fig. 3. PESQ and STOI scores using ReLU and Sigmoid activation functions.

Fig. 4. MSE optimization curves for different DNN structures.

N. Saleem, M. Irfan Khattak / Applied Acoustics 167 (2020) 107385 5
The equalization factor updates automatically during training
process. The DNN outputs are transformed by using following
expression given as:

Z
�
ðdÞ ¼ lðdÞẐðdÞ � r dð Þ þmðdÞ ð10Þ
Wherer(d) andm(d) denotes variance and mean of speech. The

equalization factor elevates the variances of the speech according
to (10). In the variance equalization post-filtering, the multiplica-
tion of the equalization factor to the network output features can
be viewed as enforcing an exponential factor in linear spectral
magnitude domain. Such post-filtering approach, can enlarge or
diminish the variance of the spectral trajectories depending on
the value of l(d). Mostly l(d) is bigger than 1 and the lack of
dynamics in output features is alleviated. With variance equaliza-
tion post filtering approach, the sharp formant peaks of the recon-
structed speech are achieved and residual noise is minimized.
Hence, it improves the quality and intelligibility of the separated
speech.
3. Methods and materials

3.1. Datasets

We have used 720 IEEE speech utterances [51] in training and
the testing set consists of 300 speech utterances from unknown
speakers of both genders. The WSJ0-2mix dataset has also been
used which was introduced in [52] and was derived from the
WSJ0 corpus [53]. The 2000 speech utterances from the WSJ0
training set are selected in the experiments. Mixtures of two-
talker, three-talker and four-talker are used in training and testing
procedures. The sample spectrograms of the speech mixtures are
demonstrated in Fig. 7. The duration of each mixture is about
6 min. To create the training sets, the first 3 min of each mixture
is used and mixed with the training utterances at �5dB, 0 dB,
and 5 dB SNR. The testing mixtures are created by mixing the last
3 min of mixtures. Two training and testing sets have been used in
the experiments. First, a training set of 720 IEEE utterances � 3



Fig. 5. Variance of the speech utterances before and after spectral equalization.

6 N. Saleem, M. Irfan Khattak / Applied Acoustics 167 (2020) 107385
mixtures � 3 SNR and a testing set of 300 utterances � 3 mix-
tures � 3 SNR are obtained, respectively. The other training set of
2000 WSJ0-2mix utterances � 3 mixtures � 3 SNR and a testing
set of 500 utterance � 3 mixtures � 3 SNR are obtained.

3.2. Evaluation metrics and competing methods

To measure the perceived speech intelligibility, we have used
two objective metrics; Short-time objective intelligibility (STOI)
[54] and normalized frequency weighted segmental SNR
(nFwSNRSeg) [55]. Similarly, to evaluate the quality of the sepa-
rated speech, we have used two objective metrics; Perceptual eval-
Fig. 6. Spectrogram analysis of over-smoothin

Fig. 7. Spectrograms of mixtures,
uation of speech quality (PESQ) [56] and segmental SNR (SNRSeg)
[57]. The evaluation metrics with their mathematical expressions
are given in Table 2. Two competing methods are considered in
experiments for performance comparison. First, the IBM estima-
tion based on CASA in [58], and second, the IBM estimation based
on the DNN in [59]. The proposed method is denoted as DNNMC-SVE.
To measure accuracy of the supervised binary classification, aver-
age hit (HIT) and false-alarm (FA) rates are computed for three sce-
narios (two-talker, three-talker and four-talker) included in
experiments. Each scenario comprised of 200 speech utterances.
A total of 1000 speech utterances from IEEE and WSJ0-2mix corre-
spond to three scenarios. If time–frequency units are present, we
can decide the time–frequency units and these outcomes are call-
ed HIT and FA alarms. If the time–frequency unit is correctly
decided, it has been categorized as HIT and FA in opposite case.
4. Results and analysis

We first examined the separation performance in terms of the
speech quality by using PESQ for two-talker, three-talker and
four-talker mixtures at �5dB, 0 dB and 5 dB SNRs. Table 3 provides
the results of DNNMC-SVE in terms of the PESQ for IEEE and WSJ0-
2mix datasets. All the PESQ scores are averaged over 200 utter-
ances from IEEE dataset and 500 utterances from WSJ0-2mix data-
set. The results demonstrate that DNNMC-SVE outperformed the
CASA and DNN based separation methods at all SNRs consistently.
For instance, the predicted PESQ scores with two-talkers mixture
are improved from 1.28 with the mixture to 2.44 at �5dB SNR
(DPESQtwo-talkers = 1.16) with DNNMC-SVE. Similarly, the predicted
PESQ scores with three-talker mixture are improved from 1.87
with DNN to 2.32 at �5dB SNR (DPESQthree-talkers = 0.45) with DNN-

MC-SVE. Whereas, in the case of a four-talker mixture, predicted
PESQ scores are improved from 1.99 with CASA to 2.26 at �5dB
g before and after spectral equalization.

2-talker, 3-talker and 4-taker.



Table 2
Speech Enhancement Evaluations Measures.

S. No Evaluation Metric Mathematical Expression

1 PESQ : Perceptual Evaluation of Speech Quality PESQ ¼ a0 � a1:AAsym � a2BDsym; a0 ¼ 4:5; a1 ¼ �0:1; a2 ¼ �0:039
2 SNRSeg: Segmental Signal to Noise Ratio SNRSegðm;xmÞ ¼ 10

M

PM�1
m¼0log10

Sðm;xmÞj j2
Sðm;xm Þj j� SESTðm;xm Þj jj j2

� �
3 FwSNRSeg: Frequency Weighted Segmental Signal to Noise Ratio

FWSNRSEGðm;xmÞ ¼ 10
M

PM�1
m¼0

Pk
j¼1

Bj log10
F2 ðm;jÞ

Fðm;jÞ�F̂ðm;jÞ

h i
Pk
j¼1

Bj

4 STOI: Short Time Objective Intelligibility f ðSTOIÞ ¼ 100
1þexpðrSTOIþdÞ

Table 3
Average PESQ analysis.

Processing Methods 2-Talkers 3-Talkers 4-Talkers

�5 dB 0 dB 5 dB Avg �5 dB 0 dB 5 dB Avg �5 dB 0 dB 5 dB Avg

IEEE Database
Mixture 1.28 1.81 2.15 1.74 1.17 1.63 2.01 1.61 1.12 1.51 1.91 1.52
CASA 2.17 2.49 2.76 2.47 2.01 2.41 2.70 2.37 1.99 2.33 2.62 2.31
DNN 1.97 2.23 2.49 2.23 1.87 2.12 2.42 2.13 1.77 2.09 2.38 2.08
DNNMC-SVE 2.44 2.68 2.92 2.68 2.32 2.55 2.87 2.57 2.26 2.44 2.75 2.49

WJS0-2mix Database
Mixture 1.33 1.86 2.20 1.79 1.2 1.66 2.04 1.63 1.14 1.55 1.92 1.53
CASA 2.26 2.58 2.85 2.56 2.08 2.48 2.77 2.44 2.04 2.38 2.67 2.36
DNN 2.10 2.36 2.62 2.36 1.96 2.21 2.51 2.22 1.84 2.16 2.45 2.15
DNNMC-SVE 2.60 2.84 3.08 2.84 2.44 2.67 2.99 2.7 2.35 2.53 2.84 2.57

Fig. 8. PESQ and SNRSeg improvement analysis.
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SNR (DPESQfour-talkers = 0.27) with DNNMC-SVE. The overall PESQ
improvements in all mixture types for DNNMC-SVE are depicted in
Fig. 8 (A). Secondly, the separation performance is evaluated in
terms of the SNRSeg for two-talker, three-talker and four-talker
mixtures at �5dB, 0 dB and 5 dB SNRs. Table 4 provides results
of DNNMC-SVE in terms of the SNRSeg for IEEE and WSJ0-2mix data-
sets, respectively. The predicted SNRSeg scores with two-talker
mixture are improved from 2.46 with the mixture to 6.71 at 0 dB
SNR (DSNRSegtwo-talkers = 4.25) with DNNMC-SVE. Similarly, the pre-
dicted SNRSeg scores with three-talker mixture are improved from
4.19 with DNN to 5.85 at 0 dB SNR (DSNRSegthree-talkers = 1.66) with
DNNMC-SVE. For the four-talker mixture, the predicted SNRSeg
scores are improved from 4.81 with CASA to 5.62 at 0 dB SNR
(DSNRSegfour-talkers = 0.81) with DNNMC-SVE. The overall SNRSeg



Table 4
Average SNRSeg analysis.

Processing Methods 2-Talkers 3-Talkers 4-Talkers

�5 dB 0 dB 5 dB Avg �5 dB 0 dB 5 dB Avg �5 dB 0 dB 5 dB Avg

IEEE Database
Mixture 1.96 2.46 3.30 2.57 1.85 2.04 2.72 2.21 1.72 1.96 2.25 1.97
CASA 3.82 5.03 6.91 5.25 3.79 5.41 6.32 5.17 3.52 4.81 6.13 4.82
DNN 3.24 4.23 4.59 4.02 3.18 4.19 4.33 3.92 3.04 4.09 4.22 3.78
DNNMC-SVE 5.05 6.71 8.33 6.69 4.41 5.85 7.43 5.89 4.01 5.62 6.89 5.51

WJS0-2mix Database
Mixture 2.01 2.51 3.35 2.62 1.88 2.07 2.75 1.63 3.06 1.55 1.92 1.53
CASA 3.91 5.12 7.00 5.34 3.86 5.48 6.39 2.44 4.06 4.86 6.18 2.36
DNN 3.37 4.36 4.72 4.15 3.27 4.28 4.42 2.22 3.11 4.16 4.29 2.15
DNNMC-SVE 5.21 6.87 8.49 6.85 4.53 5.97 7.55 2.7 4.10 5.71 6.98 2.57

Fig. 9. Objective Speech Intelligibility scores using STOI and FwSNRSeg Measure.

Table 5
HIT and FALSE Rates (in %age).

Model Metric 2-Talkers 3-Talkers 4-Talkers

�5dB 0 dB 5 dB �5dB 0 dB 5 dB �5dB 0 dB 5 dB

IEEE Database
DNN HIT

FA
80.97
18.53

80.33
19.76

80.23
19.88

80.50
17.89

81.80
16.67

78.77
15.14

74.44
13.28

81.09
13.52

78.88
16.74

DNNMC-SVE HIT
FA

84.61
15.85

82.42
12.12

84.59
12.50

83.71
17.36

84.29
10.77

85.20
10.96

79.36
10.49

83.91
12.24

85.62
13.66

WJS0-2mix Database
DNN HIT 81.05 80.41 80.31 80.55 81.87 78.86 74.48 81.14 78.93

FA 18.61 19.84 19.96 17.94 16.74 15.23 13.33 13.58 16.79
DNNMC-SVE HIT 84.70 82.51 84.68 83.76 84.36 85.29 79.41 83.97 85.68

FA 15.87 12.21 12.59 17.41 10.84 11.05 10.53 12.3 13.72
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Fig. 10. Classification Accuracy of Time-Frequency units.

Table 6
HIT and FALSE rates (in %) for DNNMC-SVE with and without delta features.

Mixture Type Metric Features Features + Delta

�5 dB 0 dB 5 dB Avg �5 dB 0 dB 5 dB Avg

2-Talkers HIT
FA

80.97
18.53

80.33
19.76

80.23
19.88

80.51
19.39

84.61
15.85

82.42
12.12

84.59
12.50

83.87
13.49

3-Talkers HIT
FA

80.50
17.89

81.80
16.67

78.77
15.14

80.35
16.56

83.71
17.36

84.29
10.77

85.20
10.96

84.40
13.03

4-Talkers HIT
FA

74.44
13.28

81.09
13.52

78.88
16.74

78.13
14.51

79.36
10.49

83.91
12.24

85.62
13.66

82.92
12.13

Table 7
PESQ analysis. DNNMC: With MC Dropout Regularization, DNNSVE: With Spectral Variance Equalization, and DNNMC-SVE: MC Dropout Regularization and Spectral Variance
Equalization.

Mixture Type DNN DNNMC DNNSVE DNNMC-SVE

�5 dB 0 dB 5 dB �5dB 0 dB 5 dB �5 dB 0 dB 5 dB �5 dB 0 dB 5 dB

IEEE Database
2-Talkers 1.97 2.23 2.49 2.23 2.51 2.78 2.31 2.60 2.86 2.42 2.67 2.91
3-Talkers 1.87 2.12 2.42 2.11 2.42 2.66 2.21 2.48 2.79 2.31 2.53 2.85
4-Talkers 1.77 2.09 2.38 2.01 2.34 2.59 2.12 2.38 2.68 2.23 2.43 2.73
Average 1.87 2.15 2.43 2.11 2.42 2.67 2.21 2.48 2.77 2.32 2.54 2.83

WJS0-2mix Database
2-Talkers 2.04 2.34 2.62 2.3 2.62 2.91 2.38 2.71 2.99 2.49 2.78 3.04
3-Talkers 1.93 2.21 2.42 2.17 2.51 2.77 2.27 2.57 2.9 2.37 2.62 2.96
4-Talkers 1.77 2.09 2.44 2.05 2.4 2.67 2.16 2.44 2.76 2.27 2.49 2.91
Average 1.91 2.21 2.49 2.17 2.51 2.78 2.27 2.57 2.88 2.37 2.63 2.97

Table 8
HIT and FALSE Rates in %. DNNMC: With MC dropout regularization, DNNSVE: with spectral variance equalization, and DNNMC-SVE: MC dropout regularization and spectral variance
equalization.

Mixture Type Metric DNNMC DNNSVE DNNMC-SVE

�5 dB 0 dB 5 dB �5 dB 0 dB 5 dB �5 dB 0 dB 5 dB

IEEE Database
2-Talkers HIT

FA
83.31
16.81

84.01
12.16

86.53
13.69

84.61
15.85

85.42
11.12

87.59
10.50

85.53
13.76

86.77
10.33

88.31
09.76

3-Talkers HIT
FA

82.12
12.56

83.99
15.65

84.07
11.14

83.71
11.36

84.29
10.77

85.20
10.16

84.83
10.43

85.44
09.88

86.63
09.02

4-Talkers HIT
FA

81.36
12.49

83.91
11.94

85.62
11.06

83.39
11.36

85.24
11.03

87.36
10.16

84.21
10.75

86.56
09.23

88.42
09.01

WJS0-2mix Database
2-Talkers HIT 83.36 84.07 86.6 84.66 85.48 87.66 85.58 86.83 88.38

FA 16.86 12.22 13.76 15.9 11.18 10.57 13.81 10.39 09.83
3-Talkers HIT 82.15 84.03 84.12 83.74 84.33 85.25 84.86 85.48 86.68

FA 12.59 15.69 11.19 11.39 10.81 10.21 10.46 9.92 09.07
4-Talkers HIT 81.38 83.94 85.655 83.41 85.27 87.395 84.23 86.59 88.45

FA 12.51 11.97 11.095 11.38 11.06 10.20 10.77 9.26 9.045
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improvements in all mixture types for DNNMC-SVE are depicted in
Fig. 8 (B). The results in Table 3 and 4 and Fig. 8 clearly show the
superiority of DNNMC-SVE method over DNN and provide a high-
quality speech with less residual noise.

We examined DNNMC-SVE in terms of the STOI and FwSNRSeg.
STOI and FwSNRSeg provide the measures of the overall speech
intelligibility of the separated speech utterance. Higher STOI and
FwSNRSeg scores imply better performance. Fig. 9 shows the STOI
and FwSNRSeg scores obtained with CASA, DNN and DNNMC-SVE

respectively. All the STOI and FwSNRSeg outcomes are averaged
over 200 utterances. Fig. 9(A) shows that DNNMC-SVE outperformed
the CASA and DNN consistently in all conditions in terms of STOI.
The only exceptions are: two-talker mixture at 0 dB and 5 dB SNRs,
where we deem that CASA, DNN and DNNMC-SVE performed very
well. However, DNNMC-SVE surpasses CASA and DNN at all SNRs.
The DNNMC-SVE provides high intelligibility scores (STOI � 85%)
for all mixtures at SNR � -5dB. The overall best prediction score
in terms of STOI is 96.04%. For example, the average predicted STOI
rates with three-talker mixture are improved from 74.22% with
DNN and 82% with CASA to 89.9% with DNNMC-SVE at �5dB SNR.
Similarly, the average predicted rates with four-talker mixture
are improved from 70.02% with DNN and 80% with CASA to 86%
with DNNMC-SVE at �5dB SNR. Fig. 9(B) shows the normalized
FwSNRSeg (nFwSNRSeg) scores obtained with CASA, DNN and
DNNMC-SVE respectively. The DNNMC-SVE provides high intelligibility
scores (nFwSNRSeg � 1.00) for all mixtures at SNR � -5dB. For
example, the normalized predicted nFwSNRSeg scores with
three-talker mixture are improved from 0.7 with DNN and 0.88
with CASA to 1.04 with DNNMC-SVE at �5dB SNR. Similarly, the pre-
dicted normalized FwSNRSeg scores with four-talker mixture are
improved from 0.44with DNN and 0.67 with CASA to 0.9 with DNN-

MC-SVE at �5dB SNR. The predicted STOI and nFwSNRSeg results
confirmed the superiority of DNNMC-SVE.
Fig. 11. Time-varying Spectral Analysis. (A) Clean speech, (B) 4-talker mixture at 5 dB S
To measure the accuracy of the supervised binary classification,
the average hit (HIT) and false-alarm (FA) rates are computed for
three scenarios included in experiments. Each scenario comprised
of 200 speech utterances. A total of 600 speech utterances corre-
spond to three scenarios. The average HIT and FA rates are quanti-
fied by comparing the DNNMC-SVE based estimated binary mask
against the oracle mask (IBM). Table 5 shows the results obtained
using DNN and DNNMC-SVE models in the different talker conditions
for IEEE and WSJ0-2mix datasets. High HIT rates (lowest with 4-
talker at �5dB, 79.36%) and low FA rates (highest with 3-talker
at�5dB, 17.36%) are obtained with DNNMC-SVE models. The average
hit rate obtained with DNNmodels is about 5.2% lower than that of
DNNMC-SVE models. The low average FA rates are required to
achieve high speech intelligibility. According to the study [47],
FA < 20% assumes high hit rates and ensures high speech intelligi-
bility. The average FA rate in DNNMC-SVE is 12.88% which is signif-
icantly lower than DNN (16.82%). The percentage accuracy of the
DNN and DNNMC-SVE is demonstrated in Fig. 10. HIT and FA rates
obtained with and without delta features are used to quantify
the gain in classification accuracy. Table 6 shows the evaluation
of the HIT and FA rates obtained with and without delta features.
As can be observed, the delta features improved the HIT rate signif-
icantly (07% in some cases) without increasing the FA rate.

In Table 7, we compare the PESQ scores among three DNN con-
figurations, denoted as; DNNMC: with MC Dropout Regularization,
DNNSVE: with Spectral Variance Equalization, and DNNMC-SVE: with
MC Dropout Regularization and Spectral Variance Equalization. A
total of 400 speech utterances and three mixture types are used
to train the DNNs. All DNN configurations have 3 hidden layers
and 1024 neurons in all hidden layers. Compared with baseline
DNN [47], DNNMC showed improved performance, with PESQ score
improved from 1.97 to 2.23 for 2-talker mixture at low SNR (-5dB).
Similarly, DNNSVE achieved significant improvements over baseline
NR, (C) Separated by CASA, (D) Separate by DNN, and (E) Separated by DNNMC-SVE.



Fig. 12. Time-Waveform and Spectrogram Analysis of speech separated by DNN and DNNMC-SVE.
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DNN, with PESQ score improved from 1.87 to 2.21 for 3-talker mix-
ture at low SNR (-5dB). Jointly, the DNNMC-SVE achieved significant
improvements over baseline DNN, DNNMC, and DNNSVE. The PESQ
further improved consistently, with PESQ improved from 1.77,
2.01, and 2.12 to 2.23 for 4-talker mixture at �5dB SNR. The aver-
age PESQ scores are improved from 2.15, 2.40, and 2.48 to 2.56 for
2-talker, 3-talker and 4-talker mixtures. In Table 8, we compare the
HIT-FA rates for three DNN configurations; DNNMC, DNNSVE, and
DNNMC-SVE. For this experiment, again a set of 400 speech utter-
ances and three mixture types are used. All three configurations
have 3 hidden layers and 1024 neurons in all hidden layers. Com-
pared with DNNMC, and DNNSVE, high HIT rates (lowest with 4-
talker at �5dB, 84.36%) and low FA rates (highest with 2-talker
at �5dB, 13.76%) are achieved with DNNMC-SVE. The average hit rate
achieved with baseline DNN is about 6.94% lower than that of
DNNMC-SVE. We have used two databases to evaluate the perfor-
mance and it is examined in the experiments that proposed
method performed better for WJS0-2mix dataset.

Finally, we performed time-varying spectral analysis to evalu-
ate the performance gain of DNNMC-SVE over DNN and CASA.
Fig. 11 shows a sample spectrogram analysis where a clean speech
utterance is mixed with the 4-talker mixture at 5 dB SNR. The spec-
trogram of DNNMC-SVE is depicted in Fig. 11 (E), and it is clear that
the harmonic spectrums of the vowel are sustained. The formant
peaks are maintained because of spectral variance equalization.
Moreover, the spectrogram also revealed a fine structure during
speech activity areas. By analyzing the spectrum during speech-
pause areas, DNNMC-SVE outperforms in removing the residual
noise. The weak harmonic structures in high-frequency subbands
are better preserved. Therefore, the perceptual quality of the
enhanced speech provides by DNNMC-SVE is better. The utterance
with weak energy is preserved and yielded less speech distortion;
hence, the speech intelligibility is improved. The residual noise is
evident in the spectrograms of CASA and DNN, shown in Fig. 11
(C)-(D). Fig. 12 shows the time waveform and time-varying spec-
tral analysis of DNNMC-SVE and the competing DNN. A clean speech
utterance is mixed with 3-talker mixture at 0 dB SNR. The areas
highlighted with boxes indicate that the DNNMC-SVE successfully
separated the speech from the mixture signal. Residuals are evi-
dent in the spectrogram and time waveform of the competing
DNN.
5. Summary and conclusions

A supervised binary classification approach (IBM) is proposed in
this paper for speaker-independent multi-talker speech separation
based on the DNN. DNNs are trained to learn a mapping from the
mixture features and estimate a binary time–frequency mask
based on the mean square error (MSE) objective cost function,
Monte-Carlo Dropout Regularization, and standard backpropaga-
tion. The over-smoothing problem is addressed and solved by per-
forming spectral variance equalization. Four performance metrics
and two competing methods are used in the experiments to eval-
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uate the performance of the DNNMC-SVE. The average objective
quality analysis based on the PESQ and SNRSeg scores indicate that
DNNMC-SVE outperformed the CASA and DNN at all SNRs. Similarly,
the average predicted STOI and nFwSNRSeg scores confirmed supe-
riority of DNNMC-SVE over CASA and DNN. Moreover, two DNN con-
figurations, denoted as; DNNMC and DNNSVE are used in experiment
to compare the performance of DNNMC-SVE in terms of PESQ and
HIT-FA rates. The conclusions of the proposed method are summa-
rized as:

i. The PESQ scores concluded that DNNMC-SVE outperformed
the CASA and competing DNN based separation methods at
all SNRs consistently. The predicted scores with three sce-
narios are improved significantly. DNNMC-SVE achieved sub-
stantial PESQ gains at low SNRs. The average DPESQ scores
at �5dB and 0 dB for three mixtures are 1.15 and 0.91.

ii. The SNRSeg scores concluded that DNNMC-SVE outperformed
the CASA and competing DNN based separation methods
consistently. DNNMC-SVE achieved substantial SNRSeg gains
at low SNRs. The average DSNRSeg scores at �5dB and
0 dB for three mixtures are 1.65 dB and 3.91 dB. Scores in
the three scenarios suggest improved performance gain.

iii. DNNMC-SVE outperformed the CASA and competing DNN con-
sistently in all conditions in terms of the STOI and
nFwSNRSeg. DNNMC-SVE provided improved intelligibility
scores (STOI � 85%, nFwSNRSeg � 1.00). The best predicted
scores are: STOI = 96.04% and nFwSNRSeg = 1.48 dB.

iv. High HIT rates and low FA rates are obtained with DNNMC-SVE

models. The average hit rate obtained with DNN is about
5.2% lower than DNNMC-SVE. Similarly, the average FA rate
for DNNMC-SVE is 12.88% which is lower than DNN
(FA = 16.82% for DNN). The delta features improved the HIT
rate significantly (7%) without increasing the FA rate.

v. The time-varying spectral analysis concluded that harmonic
spectrums of the vowel and formant peaks are sustained
because of the spectral variance equalization. Weak energies
are preserved and yielded less speech distortion.

To conclude, the DNNMC-SVE performed significantly, providing
high speech quality and the target speech utterances are excel-
lently separated from three mixtures. Moreover, DNNMC-SVE

showed high speech intelligibility in all mixture types. In the
future work, we would be devoted in attempting further improve-
ments in the performance of the proposed method by incorporat-
ing the phase information. Also, we will systematically examine
the acoustic features set to find more robust acoustic features set
in order to train the DNN structure more efficiently.
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