
Id No 13943

Name Mehran Ali Shah

Subject OOP

Semester Summer-2020

Instructor M.Ayub

Date Sep.30.2020

Question No 1:

Answer:

There are three kinds of variables in Java

1. Local variables

2. Instance variables

3. Class/Static variables

Local Variables:

 Local variables are declared in methods, constructors, or

blocks. Local variables are created when the method, constructor or

block is entered and the variable will be destroyed once it exits the

method, constructor, or block. Local variables are visible only within the

declared method, constructor, or block. Local variables are implemented

at stack level internally. Access modifiers cannot be used for local

variables. There is no default value for local variables, so local variables

should be declared and an initial value should be assigned before the

first use.

Declaration of Local Variable:

Every local variable declaration statement is contained by a block ({ …

}). We can also declare the local variables in the header of a “for”

statement. In this case it is executed in the same manner as if it were part

of a local variable declaration statement.

For example: for(int i=0;i<=5;i++){……}

In above example int i=0 is a local variable declaration. Its scope is only

limited to the for loop.

Syntax Of Local Variable:

methodname(){

<DataType> localvarName;

}

Program:

In this program, the variable age is a local variable to the function

StudentAge().

public class StudentDetails {

 public void StudentAge()

 {

 // local variable age

 int age = 0;

 age = age + 5;

 System.out.println("Student age is : " + age);

 }

 public static void main(String args[])

 {

 StudentDetails obj = new StudentDetails();

 obj.StudentAge();

 }

}

Output:

Student age is : 21

Instance Variables:

Instance variables are non-static variables and are declared in a

class outside any method, constructor or block. As instance variables are

declared in a class, these variables are created when an object of the

class is created and destroyed when the object is destroyed. Unlike local

variables, we may use access specifiers for instance variables. If we do

not specify any access specifier then the default access specifier will be

used. Initilisation of Instance Variable is not mandatory. Its default value

is 0. Instance Variable can be accessed only by creating objects.

Program:

example we take two instance variables one is name variable of string

type and can be accessed by any child class because it is public and the

second is age variable of integer type and can be accessed in the same

class record because it is private.

public class Record{

// this instance variable is visible for any child class.

 public String name;

// this instance age variable is visible in Record class only.

 private int age;

 public Record (String RecName)

 {

 name = RecName;

 }

 public void setAge(int RecSal)

 {

 age = RecSal;

 }

 public void printRec()

 {

 // print the value for “name”

 System.out.println("name : " + name);

 //prints the value for “age”

 System.out.println("age :" + age);

 }

 public static void main(String args[])

 {

 Record r = new Record("Mehran Shah");

 r.setAge(22);

 r.printRec();

 }

}

Output:

name : Mehran Shah

age :22

Static Variables:

Static variables are also known as Class variables.

These variables are declared similarly as instance variables, the

difference is that static variables are declared using the static keyword

within a class outside any method constructor or block. Unlike instance

variables, we can only have one copy of a static variable per class

irrespective of how many objects we create. Static variables are created

at the start of program execution and destroyed automatically when

execution ends. Initilisation of Static Variable is not mandatory. Its

default value is 0. If we access the static variable like Instance variable

(through an object), the compiler will show the warning message and it

won’t halt the program. The compiler will replace the object name to

class name automatically. If we access the static variable without the

class name, compiler will automatically append the class name.

Program:

import java.io.*;

class Emp {

 // static variable salary

 public static double salary;

 public static String name = "Mehran Shah";

}

public class EmpDemo {

 public static void main(String args[])

 {

 // accessing static variable without object

 Emp.salary = 50000;

 System.out.println(Emp.name + "'s average salary:"

 + Emp.salary);

 }

}

Output:

Mehran Shah's average salary:50000

Question No 2:

Answer:

if:

 if statement is the most simple decision making statement. It is used to

decide whether a certain statement or block of statements will be

executed or not i.e if a certain condition is true then a block of statement

is executed otherwise not.

Syntax:

Here, condition after evaluation will be either true or false. if statement

accepts boolean values if the value is true then it will execute the block

of statements under it.

if(condition)

{

 // Statements to execute if

 // condition is true

}

Flowchart:

Program:

public class IfStatementExample {

 public static void main(String args[]){

 int num=70;

 if(num < 100){

 /* This println statement will only execute,

 * if the above condition is true

 */

 System.out.println("number is less than 100");

 }

 }

}

Output:

Number is less than 100

Question No 3:

Answer:

if-else-if Statement:

if-else-if statement is used when we need to check multiple

conditions. In this statement we have only one “if” and one “else”,

however we can have multiple “else if”. It is also known as if else if

ladder.

Syntax:

if (expression1) {

 // codes

}

else if(expression2) {

 // codes

}

else if (expression3) {

 // codes

}

.

.

else {

 // codes

}

Flowchart:

Program:

public class IfElseIfExample {

 public static void main(String args[]){

 int num=124;

 if(num <100 && num>=1) {

 System.out.println("Its a two digit number");

 }

 else if(num <1000 && num>=100) {

 System.out.println("Its a three digit number");

 }

 else if(num <10000 && num>=1000) {

 System.out.println("Its a four digit number");

 }

 else if(num <100000 && num>=10000) {

 System.out.println("Its a five digit number");

 }

 else {

 System.out.println("number is not between 1 & 99999");

 }

 }

}

Output:

Question No 4:

Answer:

Loops in Java:

Looping in programming languages is a feature which facilitates

the execution of a set of instructions/functions repeatedly while some

condition evaluates to true. Java provides three ways for executing the

loops. While all the ways provide similar basic functionality, they differ

in their syntax and condition checking time.

While Loop

Do-while Loop

For Loop

While Loop:

A while loop is a control flow statement that allows code to be

executed repeatedly based on a given Boolean condition. The while loop

can be thought of as a repeating if statement. While loop starts with the

checking of condition. If it evaluated to true, then the loop body

statements are executed otherwise first statement following the loop is

executed. For this reason it is also called Entry control loop. Once the

condition is evaluated to true, the statements in the loop body are

executed. Normally the statements contain an update value for the

variable being processed for the next iteration. When the condition

becomes false, the loop terminates which marks the end of its life cycle.

Syntax :

while (boolean condition)

{

 loop statements...

}

Flowchart:

Program:

public class WhileExample {

 public static void main(String[] args) {

 int i=1;

 while(i<=10){

 System.out.println(i);

 i++;

 }

 }

}

Output:

1

2

3

4

5

6

7

8

9

10

Do-while:

do while loop is similar to while loop with only difference that it checks

for condition after executing the statements, and therefore is an example

of Exit Control Loop.

Syntax:

do

{

 statements..

}

while (condition);

Flowchart:

Program:

public class DoWhileExample {

 public static void main(String[] args) {

 int i=1;

 do{

 System.out.println(i);

 i++;

 } while(i<=10);

 }

}

Output:

1

2

3

4

5

6

7

8

9

10

For Loop:

A for loop is a repetition control structure that allows you to efficiently

write a loop that needs to be executed a specific number of times. A for

loop is useful when you know how many times a task is to be repeated.

Syntax:

for (initialization condition; testing condition;

 increment/decrement)

{

 statement(s)

}

Initialization condition: Here, we initialize the variable in use. It marks

the start of a for loop. An already declared variable can be used or a

variable can be declared, local to loop only.

Testing Condition: It is used for testing the exit condition for a loop. It

must return a boolean value. It is also an Entry Control Loop as the

condition is checked prior to the execution of the loop statements.

Statement execution: Once the condition is evaluated to true, the

statements in the loop body are executed.

Increment/ Decrement: It is used for updating the variable for next

iteration.

Loop termination: When the condition becomes false, the loop

terminates marking the end of its life cycle.

Flowchart:

Program:

A program to find the sum of 1 to 100 number using for Loop:

public class ForExample {

 public static void main(String[] args) {

 int i;

 int total = 0;

 for(i=1;i<=100;i++){

 total = total + i;

 }

 System.out.println("Sum of Value from 1 to 100 number is: "

+ total);

 }

}

Output:

Sum of Value from 1 to 100 number is: 5050

Question No 5:

Answer:

package strings;

import java.util.Scanner;

public class MultiplicationTables{

 public static void main (String[] args) {

 Integer number,i;

 Scanner sc= new Scanner(System.in);

 System.out.println("Enter the number to print the table");

 number=sc.nextInt();

 for (i=10;i>=1 ;i++){

 System.out.println(number+"*"+i+"="+(number*i));

 }

 }

}

Output:

Enter the number to print the table:7

7 * 10 = 70

7 * 9 = 63

7 * 8 = 56

7 * 7 = 49

7 * 6 = 42

7 * 5 = 35

7 * 4 = 28

7 * 3 = 21

7 * 2 = 14

7 * 1 = 7

