Department of Electrical Engineering Final Assignment

Date: 23-06-2020

<u>Course Details</u>						
Course Title: <u>Electro Magnetic Field Theory</u>	Module:	4 th Semester				
Instructor: <u>Dr Rafiq Mansoor</u>	Total Marks:	50	<u>.</u>			
Student Details						
Name: Danish Hayat	Student ID:	14566				

Q1: Solve the	(a)	Determine the magnetic field at the center of the semicircular	Marks 10
following short Question		piece of wire with radius 0.20m. The current carried by the semicircular of wire is 150A.	CLO 2
	(b)	A circular coil of radius 5×10^{-2} m and with 40 turns is carrying	Marks 10
		a current of 0.25 A. Determine the magnetic field of the circular coil at the center.	CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a	Marks 07
		circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	CLO 2
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V = 1000$ for $z < 100$ for z	Marks 08
		$100+50\rho+150\rho \ Sin\phi \ V$. (a) Find V , E , D , and at p (1, , 0.5) in free space. (b) How much charge lies within the cylinder?	CLO 2
Q3:		Given the time-varying magnetic field B= $(0.5 +0.6 -0.3)$	Marks 15
	(a)) and a square filamentary loop with its corners at (2, 3, 0), (2,-3,0), and (-2,3,0) and (-2,-3,0), find the time-varying current flowing in the general direction if the total loop resistance is .	CLO 3

	Page: 1
	Question No: 1 (a).
1	Determine the magnetic
	field at the center of
	semiciscular Piece of wire
	with sadius ordan. The
1	cussent cassied by the
	semiciscular of wise is 1501
	Given:
	-> The xadius of the
н	semiciacular piece of wise
H	= 0.20 m
F	-> Cussent cassied by the
	semicixcular piece af wirk
	= 150
	Salution:
	As
1	Magnetic field is given as
	B= Olo NI
	20

Page: 2 The differential form of Balt-Savast Jaw is given dB= loI disino 47 82 B= llo I dix8 B= U. I di = llo I TX a llo I 41 x 10-7 T.m /A (150A) 4(0.20m) B = 2.4 × 10-4 T

	Page: 3	
	Question No: 1 (b)	
	A circular coil of radius Sx10-2 m El with 40 turns is carrying a current of 0.25A. Determine the magnetic field of the circular coil at the center.	
	Solution:	
=>	Radius of the ciscular cail = 5x102h	_
	Number of turns of the circular	
	coi0 = 40	
=>	Current cassied by the	
	ciscular coil = 0.25A	
=)	Magnetic field is given	
	as : B= Ulo NI	
	2a	
-	THE RESERVE OF THE PARTY OF THE	

Page: 4 putting the values We get. B= 47×10-7 Tom/A (40) 0.25A 2.50 × 10-2 m B= 1.2 × 10-4 T Ans Question No: 2 (a) Compute the magnetic field of a long storight wise that has a circular loop with a radius of 0.05m damp is the reading of the current flowing through this closed loop.

Page: 5	
Given:	
Radius = 0.05m	
Cussent = 2 amp llo = 41 x 107 N/A2	
Fosmula:	
Ampereis Law formula is;	
JBdJ = NoI	
Sodution:	
In the case of Jong straight wire.	
Jai = 27R Putting the values	
= 2×3.14 ×0.05	

Page: 6 (d) = 0.314 BJJ: ll. I B = Ulo I SIR putting the values B = 41 × 10-7 × 2 0.314 B = 8×10-67 Aus

Page: 7 Question No: 2 (b) Within the cylinder pedioLZ <1, The potential is given by V= 100+ Sop + 150 p sin QV. (a) Find V,E, D & pv at p(1,60; 0.5) in free space. (b) How much charge lies within the cylinder. For "A" : Substituting the given point, we find Vp= 279.9 V Then, E = - 7V - - 2Vap - 1 2Vap 9b b 9¢

Page: 8 = - [50 +150 Sin @ Jap - [150 cos @ Jap Evaluate the above at P to find Ep = - 179.9ap - 75.0ap V/m Now D= EOF, SO DOP Dp=-1.59ap-0.664apn(/m2. Then. Pv = V.D = $\left(\frac{1}{P}\right) \frac{d}{dP} \left(\frac{PDP}{P}\right) + \frac{1}{P} \frac{\partial D\Phi}{\partial \Phi}$ = [-1 (508+150 Sin@) +1 150 Sin@] 60=-50 EGC At P, this is pup = -443 pc/m3 for B: Me will integrate pu ouer the volume to obtain.

Page: 9

OG = SISTI - SOEO PAPARAZ

= - 21 (50) E0 (2) 00

= - 5.56nC

Question No: 3

(fiver the time vaxxying magnetic field B= (0.5ax+0.6ay -0.3az) (0s 5000t To and a savuaxe filmenataxy Joop with it's caxnexs at (2,3,0), (2,-3,0), and (-2,-3,0), and (-2,-3,0), find the time-vaxxying custent flo flowing in the general ap dixation if the total Joop xesistance is

Page: 10 Solution: B. azda = d (0.3) (4) (6) (05 5000) Where the Josp manaxmal is chosen as positive az. so that the path Integral fox E is taken around the positive a dissection. Taking the desirative, we find. em = -7.2 (5000) sin 5000t so that

_		
	Page: 11	
	pulting the values	
	T = -36000 sin Sooot	
	400 x 103	
	I= -90 sin Socot mA Aus.	
100		
9		