Online Final – Term Examination Summer Semester 2020

DISCRETE STRUCTURE

Total Marks :50

Submitted to :

Sir. Duad Khan

Submitted by :

Muhammad Islam ID = 6844 BS (SE) Section B

Question No. 1:

a) Find the 36th term of the arithmetic sequence whose 3rd term is 7 and 8th term is 17.

(10 = 6844) Q1 -SOLUTION :> Let a be The first term & "b" be The common difference of the arithemetic Sequence $a_n = q + (n-1) b_n \ge 1$ \Rightarrow $q_3 = q + (3-1) b$ and = 018 = a+(8-1) b Given that $q_{1} = 7$ and $q_{8} = 17$ There fore Subtracting (1) from (3), we get, = 10=56 = b = 1% = 6 = 2 Subtracting b=2 in (1) we have 7= 9+2(2) $\frac{7}{4} = \frac{\alpha}{4} = \alpha = 3$ Thus $a_n = a + (n-1)b$ An = 3t(n-1) 2 (using values of a 4b). Hence The value of 36th term is $q_{36} = 3 + (36 - 1)2$ = 3+70 $q_{36} = 73$ Answer

Question No. 2:

(10)

Find **fog(x)** and **gof(x)** of the functions f(x) = 2x + 3 and $g(x) = -x^2 + 5$

Solution: Solution: $f(x) = \partial x + 3$ $g(x) = -x^{2} + 5$ fog(x) = ? gof(x) = ?	
Given data $f(x) = 3x + 3$ $g(x) = -x^{2} + 5$ $fog(x) = ?$	
$f(x) = \partial x + 3$ $g(x) = -x^{2} + 5$ fog(x) = ?	
$g(n) = -x^3 + 5$ fog(n) = ?	
fog(x) = ?	
6	
90t(x) - 1	
first we find fog $(x) = ?$	3
$g(x) = -x^{2}+5$, $f(x) = 2x^{4}+5$	
fog(x) = f(g(x))	
fog(n) = f(-x2+5)	
$= 2 \cdot (-x^{2} + 5) + 3$	
$= -2x^{2} + 10 + 3$	
2 . 12	
= -dx + is	og(x)
= -2x + 15 fog(x) = -2xt + 13	3
Thus we defined gof (n)?	
$f(x) = 3x + 3$, $g(x) = -x^{2}$	+5
gof(n) = g(f(n))	
$g_{of}(n) = g(2n+3)$	
$= -(2\pi + 3)^2 + 5$	<
$= -(4\chi^{2} + 12\chi + 9) + 5$	5
$= -4x^2 - 12x - 4$	
50 gof(n) = -4x - 12x - 4	$7 \rightarrow qof(n)$
901(n) = -12 (a)2 (],,]

Question No. 3:

(10)

Prove by mathematical induction that the statement is true for all integers $n \geq 1$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

10=6844. Thus The left-hand side (2) is equal to the right-hand side of (2). This proves the inductive step. There fore, by the principle of mathematical Induction, The given statement is true for every positive Integer n.

Question No. 4:

(10)

Discuss different types of relations with example in detail.

Answer:

Different Types of Relations

There are 8 main types of relations which include:

- Empty Relation
- Universal Relation
- Identity Relation
- Inverse Relation
- Reflexive Relation
- Symmetric Relation
- Transitive Relation
- Equivalence Relation

1. Empty Relation

An empty relation (or void relation) is one in which there is no relation between any elements of a set.

For example, if set A = $\{1, 2, 3\}$ then, one of the void relations can be R = $\{x, y\}$

where, |x - y| = 8. For empty relation,

 $\mathsf{R} = \phi \subset \mathsf{A} \times \mathsf{A}$

2. Universal Relation

A universal (or full relation) is a type of relation in which every element of a set is related to each other.

For example if a set A = {a, b, c}. Now one of the universal relations will be

 $R = \{x, y\}$ where, $|x - y| \ge 0$. For universal relation, $R = A \times A$

Submitted Dated 30/10/2020

3. Identity Relation

In an identity relation, every element of a set is related to itself only.

For example, in a set A = {a, b, c}, the identity relation will be I = {a, a}, {b, b}, {c, c}. For identity relation, I = {(a, a), $a \in A$ }

4. Inverse Relation

Inverse relation is seen when a set has elements which are inverse pairs of another set.

For example if set A = {(a, b), (c, d)}, then inverse relation will be

R-1 = {(b, a), (d, c)}. So, for an inverse relation, R-1 = {(b, a): $(a, b) \in R$ }

5. <u>Reflexive Relation</u>

In a reflexive relation, every element maps to itself.

For example, consider a set $A = \{1, 2,\}$. Now an example of reflexive relation will be $R = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$. The reflexive relation is given by- **(a, a)** $\in \mathbb{R}$

6. Symmetric Relation

In a symmetric relation, if a=b is true then b=a is also true. In other words, a relation R is symmetric only if (b, a) \in R is true when (a,b) \in R.

An example of symmetric relation will be $R = \{(1, 2), (2, 1)\}$ for a set $A = \{1, 2\}$. So, for a symmetric relation, $aRb \Rightarrow bRa, \forall a, b \in A$

7. Transitive Relation

A relation in a set A is transitive if, $(a, b) \in R$, $(b, c) \in R$, then $(a, c) \in R$, for all a, b, $c \in A$

8. Equivalence Relation

A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive. **For example,** if we throw two dices A & B and note down all the possible outcome.

Submitted Dated 30/10/2020

Question No. 5

(10)

Suppose that an automobile license plate has three letters followed by three digits.

- a. How many different license plates are possible?
- b. How many license plates could begin with A and end on 0.
- c. How many license plates begin with PQR

10=6844 26 Letter (a,b,c,--- Z) 10 digits (6,1,2,----9) Q5:>1 SOLLITION :> (A) Number of Possible Licence Plates License plates have three letters Gollowed by three Digits. = 26×26×26 × 10×10×10 At each Position any of At each of Itese Position The 26 letters Can be any of The 10 digits Can Placed. be placed. Number of Possible License Plates. [-17,576,000] Hence :-(b) Number of License plates beginning with A end In O. in which all the tetters of gits are 1 26 26 10 10 1 (1) x 20 x 20 x (1) x (1) A At first Position we can place only A At Sixth Position we can place only O

10 = 6844 and Position can be filled by remaining 95 letters. 3rd Positions can be filled by remain 26 Letters 4th position can be filled by remain 10 digits -5th position can be filled by remaining 10 digits-Number of Such License plates 50 = 67,600 5 A license place contains 3 Letters followed by 3 digits. while The Licence plate starts with PQR First Letter : 1 way (needs to be P) Second u : I way (u u u Q) third Letter : I way (needs to be R) First digit : 10 way (as There are 10 possible digits) second digit : 10 way = (4 > Third digit : 10 way = (4) Use The multiplication rule: (A) × (A) + (A) × 10 × 10 × 10 P (D) R $= 10^3 = 1,000$ Thus There are 1000 possible licence Plates begining with PQR. completed.