Business Process Engineering

Name: BABAR KAMAL
ID: 5504

Question No: 01

Answer:

Firstly, we have required to find the Load Distance (LD)score for the above scenario including table details as follows:

We have a LD formula:
LD_Score (i, j) = Load (i, j) * Distance (i, j)

So, we have to find the required details like current design and proposed design distances along with the LD score to make a decision that which is better approach design as follows;

Calculation for LD of two distances:

Given		Current Design		Proposed Design	
Centres	Load	Distance	LD Score	Distance	LD Score
(A, B)	20	2	40	1	20
(A, D)	20	1	20	1	20
(A, F)	80	3	240	3	240
(B, C)	10	2	20	1	10
(B, E)	75	3	225	1	75
(C, D)	15	1	15	3	45
(C, F)	90	1	90	1	90
(C, E)	70	2	140	1	70
TOTAL	-	-	790	-	570

So, we already concluded that the LD of proposed design is min from the current design which is a good approach having LD of 570 . It is a better design than the current one which has too much LD of790.

Question No: 02

Answer:

Firstly, we know that we already have activities along with waiting time and process time separately for each activity. Now, we have to compute the CT and CT Efficiency for which the first thing I am going to do is to find the Activity time and then we compute the CT as follows;

We have Formulas:

1) Activity_Time= Waiting Time + Process Time

2) CT (for multiple paths) $=\mathrm{p} 1 \mathrm{~T} 1+\mathrm{p} 2 \mathrm{~T} 2+\ldots \ldots \ldots+\mathrm{pmTm}=\sum_{i=1}^{m} p i T i$

Where

$$
\begin{aligned}
& p_{i}=\text { The probability that a job is routed to path } i \\
& T_{i}=\text { The time to go down path } i
\end{aligned}
$$

3) CT Efficiency= Theoretical Cycle Time / CT

So, we have a given table_calculated;

Activity	Waiting Time (min)	Process Time (min)	Activity Time (min)
A	20	12	32
B	15	18	33
C	5	30	35
D	12	17	29
E	3	12	15
F	5	25	30
G	8	7	15
H	5	10	15
I	15	25	40
J	5	20	25

$C T=10+0.1 * 20+25+0.9 * 24+0.15 *(12+23+35)+15$
$=84.1 \mathrm{~min}$
For Theoretical CT we have process time as follows;
Process time $=12+0.1 * 18+17+0.9 * 30+0.15 *(12+25+7)+10$

$$
=74.4 \mathrm{~min}
$$

Now, we compute the CT Efficiency here below;
CT Efficiency $=74.4$ / 84.1

$$
=0.88
$$

2nd Method:

If we don't add the two way decides values of flow chart like just take a short path of A toward B and D and then also add them with E, F and G and H because I, J, K not included in flow chart so we have following efficiency and CT below;
$C T=10+0.1 * 20+25+0.15 *(12+23+35)+15$
$=62.5 \mathrm{~min}$
For Theoretical CT we have process time as follows;
Process time $=12+0.1 * 18+17+0.15 *(12+25+7)+10$

$$
=47.4 \mathrm{~min}
$$

Now, we compute the CT Efficiency here below;
CT Efficiency $=47.4 / 62.5$

$$
=0.75
$$

So, above already mention the details and I solved it by both ways $1^{\text {st }}$ one is with all paths included in flowchart. And $2^{\text {nd }}$ one is without a decision loop path only select one shortest path having 10% not 90% one.

