
Haroon Rashid

Reg#: 16549

Semester:6th

Sessional Assignment: INFORMATION SYSTEM & DATA

PROCESSING

Submitted To: Sir MUHAMMAD ABRAR KHAN

Q1: Define organization; also explain the structure of an organization by giving an example of a

well-known organization.

Answer:

Organization: An organization or organisation is an entity, such as a company, an institution, or

an association, comprising one or more people and having a particular purpose.

Structure of organization:

Organizational Structure

What Is an Organizational Structure?
An organizational structure is a system that outlines how certain activities are directed in order
to achieve the goals of an organization. These activities can include rules, roles, and
responsibilities.

The organizational structure also determines how information flows between levels within the
company. For example, in a centralized structure, decisions flow from the top down, while in a
decentralized structure, decision-making power is distributed among various levels of the
organization.

Having an organizational structure in place allows companies to remain efficient and focused.

Centralized Versus Decentralized Organizational Structures
An organizational structure is either centralized or decentralized. Traditionally, organizations
have been structured with centralized leadership and a defined chain of command. The military
is an organization famous for its highly centralized structure, with a long and specific hierarchy
of superiors and subordinates.

There has been a rise in decentralized organizations, as is the case with many
technology startups. This allows companies to remain fast, agile, and adaptable, with almost
every employee receiving a high level of personal agency.

Types of Organizational Structures:

Functional Structure
Four types of common organizational structures are implemented in the real world. The first and most
common is a functional structure. This is also referred to as a bureaucratic organizational

structure and breaks up a company based on the specialization of its workforce. Most small-to-medium-
sized businesses implement a functional structure. Dividing the firm into departments consisting of
marketing, sales, and operations is the act of using a bureaucratic organizational structure.

Example of Functional Structure of well-known company:
 Airtel has a functional structure which is one of the best organizational structure examples. It

has directors for supply chain, marketing, human resources, technology, customer care, legal

works and so on. Each of these directors controls their departments and are answerable to what

their functional department is responsible for. The figure explains the functional structure of

https://en.wikipedia.org/wiki/Legal_entity
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Institution
https://en.wikipedia.org/wiki/Voluntary_association
https://en.wikipedia.org/wiki/Person
https://www.investopedia.com/terms/s/startup.asp
https://www.investopedia.com/terms/b/bureaucracy.asp
https://www.investopedia.com/terms/b/bureaucracy.asp

Airtel and other companies who use functional structures. The top of the structure has the board

of directors, then there usually is a CEO and then comes the functional divisions such as sales,

marketing, production, finance, human resources and so on. Each of these divisions has a

manager and a team of employees who achieve their set goals by working together.

Figure:

Divisional or Multidivisional Structure
The second type is common among large companies with many business units. Called the

divisional or multidivisional structure, a company that uses this method structures its leadership

team based on the products, projects, or subsidiaries they operate. A good example of this

structure is Johnson & Johnson. With thousands of products and lines of business, the company

structures itself so each business unit operates as its own company with its own president.

Example of Divisional or Multidivisional Structure of well-known company:
A multidivisional organizational structure aligns a company according to individual divisions,
which are based on geographic locations, products or services. For example, a moving
company might create a geographic-divisional structure, which includes the Texas and
California divisions. As an alternative, a manufacturing company might implement a product-
based divisional structure that includes the cable assembly and product engineering divisions.
In contrast, a professional services company might organize around service lines, such as the
personal and business services divisions. A small business, such as an insurance agency,
with a region-based organizational structure may have multiple regions spread across one or
more states and, therefore, multiple domestic markets. In turn, a country-based corporation,
such as a software developer, may have offices in the United States and Pakistan, but only
one domestic market.

Flatarchy Structure
Flatarchy, a newer structure, is the third type and is used among many startups. As the name

alludes, it flattens the hierarchy and chain of command and gives its employees a lot of

autonomy. Companies that use this type of structure have a high speed of implementation

Example of Flatarchy Structure of well-known company:
The best example of this structure within a company is if the organization has an internal
incubator or innovation program. Within this system, the company can operate in an existing
structure, but employees at any level are encouraged to suggest ideas and run with them,
potentially creating new flat teams. Lockheed Martin, according to Forbes, was famous for its
skunkworks project, which helped develop the design of a spy plane.
Google, Adobe, LinkedIn and many other companies have internal incubators where employees
are encouraged to be creative and innovative in order to promote the company’s overall growth.

Matrix Structure
The fourth and final organizational structure is a matrix structure. It is also the most confusing
and the least used. This structure matrixes employees across different superiors, divisions, or
departments. An employee working for a matrixed company, for example, may have duties in

both sales and customer service.

Example of Matrix Structure of well-known company:
 The matrix structure followed by Starbucks coffee is one of the best organizational structure
examples. The primary reason for the firm’s success is its structure. Different organizational
structures that combine to form Starbuck’s matrix structure are divisional structure, functional
structure, and team-based structure.

Question2:

Explain System Development Life Cycle; also explain different types system development life

cycle.

https://www.forbes.com/sites/jacobmorgan/2015/07/15/the-5-types-of-organizational-structures-part-4-flatarchies/#326b9c1c6707
https://www.investopedia.com/terms/c/customer-service.asp

Answer:

System Development Life Cycle: System Development Life Cycle (SDLC) is a series of

six main phases to create a hardware system only, a software system only or a combination of

both to meet or exceed customer’s expectations.

System is a broad and a general term, and as per to Wikipedia; “A system is a set of
interacting or interdependent components forming an integrated whole” it’s a term that can be
used in different industries, therefore Software Development Life Cycle is a limited term that
explains the phases of creating a software component that integrates with other software
components to create the whole system.
Below we’ll take a general look on System Development Life Cycle phases, bearing in mind that
each system is different from the other in terms of complexity, required components and

expected solutions and functionalities:

Phases of SDLC:

https://airbrake.io/blog/insight/what-is-the-software-development-life-cycle

1- System Planning

The Planning phase is the most crucial step in creating a successful system, during this phase
you decide exactly what you want to do and the problems you’re trying to solve, by:

▪ Defining the problems, the objectives and the resources such as personnel and costs.

▪ Studying the ability of proposing alternative solutions after meeting with clients, suppliers,
consultants and employees.

▪ Studying how to make your product better than your competitors’.

After analyzing this data, you will have three choices: develop a new system, improve the
current system or leave the system as it is.

2- System Analysis

The end-user’s requirements should be determined and documented, what their expectations
are for the system, and how it will perform. A feasibility study will be made for the project as
well, involving determining whether it’s organizationally, economically, socially, technologically
feasible. it’s very important to maintain strong communication level with the clients to make sure
you have a clear vision of the finished product and its function.

3- System Design

The design phase comes after a good understanding of customer’s requirements, this phase
defines the elements of a system, the components, the security level, modules, architecture and
the different interfaces and type of data that goes through the system.

A general system design can be done with a pen and a piece of paper to determine how the
system will look like and how it will function, and then a detailed and expanded system design is

produced, and it will meet all functional and technical requirements, logically and physically.

4- Implementation and Deployment

This phase comes after a complete understanding of system requirements and specifications,
it’s the actual construction process after having a complete and illustrated design for the
requested system.

In the Software Development Life Cycle, the actual code is written here, and if the system
contains hardware, then the implementation phase will contain configuration and fine-tuning for
the hardware to meet certain requirements and functions.

In this phase, the system is ready to be deployed and installed in customer’s premises, ready to
become running, live and productive, training may be required for end users to make sure they
know how to use the system and to get familiar with it, the implementation phase may take a
long time and that depends on the complexity of the system and the solution it presents.

5- System Testing and Integration

Bringing different components and subsystems together to create the whole integrated system,
and then Introducing the system to different inputs to obtain and analyze its outputs and
behavior and the way it functions. Testing is becoming more and more important to ensure
customer’s satisfaction, and it requires no knowledge in coding, hardware configuration or
design.

Testing can be performed by real users, or by a team of specialized personnel, it can also be
systematic and automated to ensure that the actual outcomes are compared and equal to the
predicted and desired outcomes

6- System Maintenance

In this phase, periodic maintenance for the system will be carried out to make sure that the
system won’t become obsolete, this will include replacing the old hardware and continuously
evaluating system’s performance, it also includes providing latest updates for certain
components to make sure it meets the right standards and the latest technologies to face
current security threats.

These are the main six phases of the System Development Life Cycle, and it’s an iterative
process for each project. It’s important to mention that excellent communication level should be
maintained with the customer, and Prototypes are very important and helpful when it comes to
meeting the requirements. By building the system in short iterations; we can guarantee meeting
the customer’s requirements before we build the whole system.

Many models of system development life cycle came up from the idea of saving effort, money
and time, in addition to minimizing the risk of not meeting the customer’s requirement at the end
of project, some of these models are SDLC Iterative Model, and SDLC Agile Model.

 Different types system development life cycle.

• Waterfall model

• Iterative model

• Spiral model

• V-shaped model

• Agile model

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Spiral_model
https://en.wikipedia.org/wiki/V-Model_(software_development)
https://en.wikipedia.org/wiki/Agile_software_development

Waterfall Model:

The Waterfall model is the earliest SDLC approach that was used for software development.

The waterfall Model illustrates the software development process in a linear sequential flow. This

means that any phase in the development process begins only if the previous phase is complete.

Iterative model

The iterative model is a particular implementation of a software development life cycle (SDLC)

that focuses on an initial, simplified implementation, which then progressively gains more

complexity and a broader feature set until the final system is complete.

Spiral model: The spiral model is a systems development lifecycle (SDLC) method used

for risk management that combines the iterative development process model with elements of

the waterfall model. The spiral model is used by software engineers and is favored for large,

expensive and complicated projects.

V-Model

The V-model is a type of SDLC model where process executes in a sequential manner in V-shape.

It is also known as Verification and Validation model.

Agile Model:

Agile SDLC model is a combination of iterative and incremental process models with focus on

process adaptability and customer satisfaction by rapid delivery of working software

product. Agile Methods break the product into small incremental builds. These builds are

provided in iterations.

Question3:

Explain Incremental model and Spiral; also explain main deference between spiral and

incremental model.

Answer:

Incremental model: Incremental Model is a process of software development where

requirements are broken down into multiple standalone modules of software development

cycle. Incremental development is done in steps from analysis design, implementation,

testing/verification, maintenance.

Each iteration passes through the requirements, design, coding and testing phases. And

each subsequent release of the system adds function to the previous release until all designed

functionality has been implemented.

The system is put into production when the first increment is delivered. The first increment is
often a core product where the basic requirements are addressed, and supplementary features
are added in the next increments. Once the core product is analyzed by the client, there is plan
development for the next increment.

Characteristics of an Incremental module includes

• System development is broken down into many mini development projects
• Partial systems are successively built to produce a final total system
• Highest priority requirement is tackled first
• Once the requirement is developed, requirement for that increment are frozen

When to use Incremental models?

• Requirements of the system are clearly understood
• When demand for an early release of a product arises
• When software engineering team are not very well skilled or trained
• When high-risk features and goals are involved
• Such methodology is more in use for web application and product-based companies.

Advantages:

• The software will be generated quickly during the software life cycle

• It is flexible and less expensive to change requirements and scope

• Throughout the development stages changes can be done.

Disadvantages:

• It requires a good planning designing.

• Problems might cause due to system architecture as such not all requirements collected
up front for the entire software lifecycle.

• Each iteration phase is rigid and does not overlap each other.

Spiral Model: The spiral model is a systems development lifecycle (SDLC) method used

for risk management that combines the iterative development process model with elements of
the waterfall model. The spiral model is used by software engineers and is favored for large,
expensive and complicated projects. When viewed as a diagram, the spiral model looks like a
coil with many loops. The number of loops varies based on each project and is often designated
by the project manager. Each loop of the spiral is a phase in the software development process.
The spiral model enables gradual releases and refinement of a product through each phase of
the spiral as well as the ability to build prototypes at each phase. The most important feature of
the model is its ability to manage unknown risks after the project has commenced; creating a
prototype makes this feasible.

Uses of the spiral model
As mentioned before, the spiral model is best used in large, expensive and complicated projects. Other
uses include:

• projects in which frequent releases are necessary;

• projects in which changes may be required at any time;

• long term projects that are not feasible due to altered economic priorities;

• medium to high risk projects;

• projects in which cost and risk analysis is important;

• projects that would benefit from the creation of a prototype; and

• projects with unclear or complex requirements.

Spiral model phases
When looking at a diagram of a spiral model, the radius of the spiral represents the cost of the
project and the angular degree represents the progress made in the current phase. Each phase
begins with a goal for the design and ends when the developer or client reviews the progress.
Every phase can be broken into four quadrants: identifying and understanding requirements,

performing risk analysis, building the prototype and evaluation of the software's performance.

Phases begin in the quadrant dedicated to the identification and understanding of requirements.

The overall goal of the phase should be determined and all objectives should be elaborated and

analyzed. It is important to also identify alternative solutions in case the attempted version fails

to perform.

Next, risk analysis should be performed on all possible solutions in order to find any faults or

vulnerabilities -- such as running over the budget or areas within the software that could be

open to cyber-attacks. Each risk should then be resolved using the most efficient strategy.

In the next quadrant, the prototype is built and tested. This step includes: architectural design,
design of modules, physical product design and the final design. It takes the proposal that has
been created in the first two quadrants and turns it into software that can be utilized.
Finally, in the fourth quadrant, the test results of the newest version are evaluated. This analysis

allows programmers to stop and understand what worked and didn’t work before progressing

with a new build. At the end of this quadrant, planning for the next phase begins and the cycle

repeats. At the end of the whole spiral, the software is finally deployed in its respective market.

https://searchsoftwarequality.techtarget.com/definition/systems-development-life-cycle
https://searchcompliance.techtarget.com/definition/risk-management
https://searchsoftwarequality.techtarget.com/definition/iterative-development
https://searchsoftwarequality.techtarget.com/definition/waterfall-model
https://searchcio.techtarget.com/definition/project-management
https://searcherp.techtarget.com/definition/prototype
https://whatis.techtarget.com/definition/angular-degree-deg-or
https://whatis.techtarget.com/definition/architecture
https://searchsoftwarequality.techtarget.com/definition/build

Steps of the spiral model
While the phases are broken down into quadrants, each quadrant can be further broken down

into the steps that occur within each one. The steps in the spiral model can be generalized as

follows:

The new system requirements are defined in as much detail as possible. This usually involves

interviewing a number of users representing all the external or internal users and other aspects

of the existing system.

A preliminary design is created for the new system.

A first prototype of the new system is constructed from the preliminary design. This is usually a

scaled-down system, and represents an approximation of the characteristics of the final product.

A second prototype is evolved by a fourfold procedure: (1) evaluating the first prototype in terms

of its strengths, weaknesses, and risks; (2) defining the requirements of the second prototype;

(3) planning and designing the second prototype; (4) constructing and testing the second

prototype.

The entire project can be aborted if the risk is deemed too great. Risk factors might involve

development cost overruns, operating-cost miscalculation and other factors that could result in a

less-than-satisfactory final product.

The existing prototype is evaluated in the same manner as was the previous prototype, and, if

necessary, another prototype is developed from it according to the fourfold procedure outlined

above.

The preceding steps are iterated until the customer is satisfied that the refined prototype

represents the final product desired.

The final system is constructed, based on the refined prototype.

The final system is thoroughly evaluated and tested. Routine maintenance is carried out on a

continuing basis to prevent large-scale failures and to minimize downtime.

Benefits of the spiral model
As mentioned before, the spiral model is a great option for large, complex projects. The
progressive nature of the model allows developers to break a big project into smaller pieces and
tackle one feature at a time, ensuring nothing is missed. Furthermore, since the prototype
building is done progressively, the cost estimation of the whole project can sometimes be
easier.
Other benefits of the spiral model include:
Flexibility - Changes made to the requirements after development has started can be easily

adopted and incorporated.

Risk handling - The spiral model involves risk analysis and handling in every phase, improving

security and the chances of avoiding attacks and breakages. The iterative development process

also facilitates risk management.

Customer satisfaction - The spiral model facilitates customer feedback. If the software is being

designed for a customer, then the customer will be able to see and evaluate their product in

every phase. This allows them to voice dissatisfactions or make changes before the product is

fully built, saving the development team time and money.

Limitations of the spiral model
Limitations of the spiral model include:

High cost - The spiral model is expensive and, therefore, is not suitable for small projects.

Dependence on risk analysis - Since successful completion of the project depends on effective risk

handling, then it is necessary for involved personnel to have expertise in risk assessment.

Complexity - The spiral model is more complex than other SDLC options. For it to operate efficiently,

protocols must be followed closely. Furthermore, there is increased documentation since the model

involves intermediate phases.

Hard to manage time - Going into the project, the number of required phases is often unknown, making

time management almost impossible. Therefore, there is always a risk for falling behind schedule or

going over budget.

Main deference between spiral and incremental model:

A iterative model is a way to describe a SDLC as a sequence of consecutive steps.

A spiral model is a way to implement a iterative model, where each iteration follows a waterfall-

like model. With each iteration, the product is updated, more features are added etc.

