MID TERM Assignment (Fall- 2020)
Name: HOORIA KHAN ORAKZAI
ID: 14263
DEPARTMENT: BS(SOFTWARE-ENGINEERING) SUBJECT: Natural Language Processing

Time: 6 Days
Instructor: Aasma Khan

Total Marks: 30
Date: $\mathbf{2 0}^{\text {th }}$ April, 2020

Note: Attempt all Questions.
Question No. 1:
a) Briefly explain NLP? Write the name of 2 Applications of NLP with example? Write the name of 2 Challenges of NLP with example?

Answer:

* Natural language processing:
(NLP) is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data. A definitive goal of NLP is to peruse, interpret, comprehend, and understand the human dialects in a way that is important. Most NLP procedures depend on AI to get significance from human dialects.

Two Application of NLP:

> Interactive Voice Response (IVR) applications utilized in call centre to react to specific clients' solicitations.
Machine interpretation (M), procedure of deciphering one source language or content into another dialect, is one of the most significant utilizations of NLP
> Personal associate applications, for example, Google-Assistant, Siri, Cortana, and Alexa

Challenges:

$>$ Syntax \& Ambiguity:

Examples:

I saw a man with a telescope.

- Who had the telescope?

Semantics:

Examples:

The astronomer loves the star

- Star in the sky
- Celebrity
b) Define Phonology and Morphology with the help of example?

Phonology:

Phonology is the study of how sounds are organized and used in natural languages. It's a field of linguistics which study the distribution of sound in a language as well as the interaction between those different sounds.

Example:

An example of phonology is the study of different sounds and the way they come together to form speech and words - such as the comparison of the sounds of the two "p" sounds in "pop-up.".

Morphology

Morphology is the study of morphemes; a morpheme is defined as "the smallest unit of meaning in a language." All words, since they have meaning, have at least 1 morpheme, but a word can have several morphemes.

Examples:

For example the word "cat" has just one morpheme but the word "cats" has 2 , as the -s denotes plurality.

Question No. 2:

a) What do you mean by regular expressions?

Answer

Regular Expressions:

Regular Expression also called regex. It is a very powerful programming tool that is used for a variety of purposes such as feature extraction from text, string replacement and other string manipulations. A regular expression is a set of characters, or a pattern, which is used to find sub strings in a given
string. for ex. extracting all hashtags from a tweet, getting email id or phone numbers etc. from a large unstructured text content.
b) Specify the text strings using the below regular expressions:

1. /[a-fA-FO-9]
a. Given string: a89opxcfff

OUTPUT: a89 opx cff
2. /[abc]
a. Given string abc ac acb a0b a2b a42c A878

OUTPUT: abc ac acb a0b a2b a42c A878
3. $a(b \mid c)$
a. Given string abc aa acbaob

OUTPUT: abc aa acbaob
4. /abc*
a. Given string ab abc abcc babc abc abcc babc OUTPUT: $a b a b c a b c c$ babc abc abcc babc
5. /abc+
a. Given string ab abc abcc babc abc abcc babc

OUTPUT: $a b$ abc abcc babc abc abcc babc
6. /[^a-z A-Z]
a. Given string Price of cat $\$ 1$

OUTPUT: Price of cat \$1
7. /[^a-z A-Z 0-9]
a. Given string: a89 opx cfff \$1!

OUTPUT: a89 opx cfff \$1!
8. /a(bc)
a. Given string: ab abc ac acb a0b a2b a42c A87d

OUTPUT: $a b$ abc ac acb a0b a2b a42c A87d
9. $/ a[b c]$
a. Given string abc ac acb a0ba2b

OUTPUT: abc ac acb a0ba2b
10.a|b|c
a. Given string: ab abc ac acb a0b a2b a42c A87d OUTPUT: $a b$ abc ac acb a0b a2b a42c A87d

Question No. 3:
a) Design an NFA over an alphabet $\sum=\{x, y\}$ such that every string accepted must have a substring --xyy-- ? identify its tuples and also convert it into DFA.

NFA

\# NFA TRANSITION TABLE:

S	X	Y
$\mathrm{s0}$	$\mathrm{~s} 0, \mathrm{~s} 1$	s 0
s 1	Null	s 2
s 2	Null	s 3
$\mathrm{s3}$	s 1	s 3

\$ DFSA TRANSITION TABLE:

Q	X	Y
$\rightarrow \mathrm{s0}$	$\{s 0, s 1\}$	s 0
$\{s 0, s 1\}$	$\{s 0, s 1\}$	$\{s 0, s 2\}$
$\{s 0, s 2\}$	$\{s 0, s 1\}$	$\{s 0, s 3\}$
$\{s 0, s 3\}$	$\{s 0, s 1, s 3\}$	$\{s 0, s 3\}$
$\{s 0, s 1, s 3\}$	$\{s 0, s 1, s 3\}$	$\{s 0, s 3\}$

DFA:

Question No. 4:
a) Design an NFA for the regular expression : $(x+y+z x)((y x y) *+(x+y) *)^{*}(x y)^{*}$

Question No. 5:

Find the Maximum Likelihood Estimation of the below according to the given corpus using conditional probability:

<s> The green eyes </s>	<s> The green jungle	</s>
<s> The green jungle </s>	<s> The green eyes	</s>
<s> The green park	</s>	<s> The green eyes

i. \quad P(jungle |The green)

$P($ Jungle The green $)=2 / 6=0.3333$
P(The Green)
ii. $\quad P($ eyes \mid The green $)$

P (The Green) $)=3 / 6=0.5$
P (The Green Eyes)
iii. P(park|The green)
$P($ The Green Park) $=1 / 6=0.17$
P(The Green)
iv. $\quad P($ sea \mid The green $)$
$\mathrm{P}($ The Green Sea) $=0 / 6=0$
P(The Green)

$$
P(S)=\frac{2}{6} \cdot \frac{3}{6} \cdot \frac{1}{6} \cdot \frac{0}{6}=0
$$

Answer

