
Department of Electrical Engineering Final Assignment Date: 22/06/2020

Course Details

Course 7 Instruct	· · · · · · · · · · · · · · · · · · ·	Module: _ Total Marks:	<u>4t</u>	
	Student Details			
Name:Adnan ShahzadaStudent ID:14780				
Student S	Signature: <u>adnanshahzada</u>			
Q1.	Assume that a 2000-kW turbine-generator of 0.85 power			Marks 10
	An additional load of 300 kW at 0.8 power factor is add required to operate the turbine generator but keep it from		acitors is	CLO 03
Q2.	A balanced <i>abc</i> sequence, one line voltage of a balance		$V_{AB} =$	Marks 10
	$180 \angle -20^{\circ}$ V. If the source is connected to a \triangle -connect phase and line currents.	ted load of $20 \angle 40^{\circ} \Omega$, f	ind the	CLO 02
Q3.	Consider a load with value of, $V_{rms} = 110 \angle 85^{\circ} V$, $I_{rms} =$	= 0.4∠15° A. Calculate t	he	Marks 10
	following:			CLO 01

Q3.	Consider a load with value of, $V_{\rm rms} = 110285^{\circ}$ V, $I_{\rm rms} = 0.4215^{\circ}$ A. Calculate the	Marks 10	
	following:	CLO 01	
	a) The complex and apparent powers		
	b) The real and reactive powers, and		
	c) The power factor and the load impedance.		
Q4.	Apply Laplace transform and calculate the output voltage $v_o(t)$ in the circuit of figure	Marks 10	
	below:	CLO 01	
	1Ω 1H		
	$10u(t) A () 0.5 F = 2 \Omega \ge 1 F = v_o$		
	$10u(l) \land \downarrow 0.51 \top 2.52 \leq 11 \top = 0$		
	Figure		
Q5.	For the circuit given in figure below, the speaker works as load while the amplifier and	Marks 10	
	the capacitor act as the source. To block dc current from an amplifier, a coupling	CLO 03	
	capacitor of 80 nF is used (see figures below). Calculate the following:		
	expansion of oo ministration (see ingares certow). Cureatate the following.		
	a) At what frequency is maximum power transfer to the speaker?		
	$1 > 16 Y_{\rm eff} = 5 Y_{\rm eff}$		

b) If $Vs = 5 V_{rms}$, how much power is delivered to the speaker at that

Q2:-

$$S_{3}^{pl}$$
:-
 $Drignal load$:-
 $P_{4} = good KW$
 $Cos O_{2} = 0.85 \longrightarrow Q_{2} = 31.79^{\circ}$
 $S_{2} = \frac{P1}{Cos O 1} = gas gar H KVA$
 $Q_{2} = S_{2} \sin O 2 = 1939.5 KVAR$
Additional load:
 $P_{3} = god KW$
 $Cos O_{3} = 0.8 \longrightarrow O_{2} = 36.87^{\circ}$
 $S_{3} = \frac{P3}{Cos O_{3}} = 375 KVA$
 $Q_{2} = S_{3} \sin O g = gas KVAR$
Total load:
 $S = S_{2} + S_{3} = (P_{2} + P_{3}) + j(Q_{2} + Q_{2}) = p + jQ$

D

P = 2000 + 300 = 2300 KWQ = 1239.5 + 225 = 1464.5 KVAR

operating pf for a 2300 Kw exceeding the KVA rating minimum 10ad not 7 the 3 enerator is.

R

$\frac{\cos 0}{52} = \frac{P}{52} = \frac{3300}{2352.94} = 0.9775$

or $Q = 12.177^{\circ}$

 $Q_n = 52 \sin Q = 2352.94 \sin (12.277°)$ $Q_n = 496.323 \text{ KVAR}$

The capacitor apply the difference between total load KVAR (i.e.Q.) and the generator KVAR i.e. (Q.n.) Thus,

Ge= Q - Qn

Qc = 968.2 KVAR

(2)

Point line voltage VAB =
$$1802-20^{\circ}v$$

 $ZA = 20240^{\circ}\Omega$
 $Using formula VL = 13 VP 230^{\circ} => VP = VL$
 $Phase voltage$

(3)

$$van = \frac{180 \ L - 20^{\circ}}{\sqrt{3}} \cdot 2 - 30^{\circ} = 103.9 \ 2 - 50^{\circ} \sqrt{-10}$$

$$\frac{2}{\sqrt{3}} = \frac{20}{3} = \frac{20 \ L 40^{\circ}}{3} = 6.67 \ L 40^{\circ} \ \pi - 10^{\circ}$$

Ia)

van 9 203.92-50

20=6.676400

Line current

T

$$Ia = \frac{Van}{Za/3} = \frac{103.9 \ L-50^{\circ}}{6.07 \ L40^{\circ}}$$

$$= 15.572-704$$

$$T = 1-120^{\circ} = 15.59L + 150^{\circ} A$$

$$IC = Ia L + 120^{\circ} = 15.59 L 30^{\circ} A$$

 $Ic = Ia L + 120^{\circ} = 15.59 L 30^{\circ} A$

phase current

$$IAB = \frac{15.57 L - 90^\circ}{13} \cdot L 30^\circ = 90 L - 60^\circ A$$

IBC = IAB 2 - 120 = 9 2-1 ILA = IAB L + 120 = 9 260°A.

(4)

Q3:-

Sal

3

(a)

Given data Vrms = 120 L 85° V Irms = 0.42 15 A The complex power S = Vrms Irms S = (220285°) (0.42 - 15°) S = 120 ×0.4 L (85°-15°) S= 44 270° VA The appearent power 5 = 151 5=44VA

(b) The real and reactive power

5= 442700 s = 44 [cos (70°) + j sin (70°)7 S = 44 [0.3420 + jo.93977 S = 15.05 + 142.35

Since S= P+ j@ Q p= 15. 05 W Q= 41.35 VAR The power factor (C) Pf = cos (70°) Pf = 0.342 (lagging) The power factor is lagging as the reactive power is positive

5)

The load Impedance is

 $2 = \frac{V}{I}$ $V = \overline{I} \sqrt{2V_{rms}}$

I = TaIrms 2= 110 19 2850 0.4122150 2= 275 2 70° 52 2 = 275 [(05 (70°) + j sin (70°)] 2= 275 [0.342 + j 0.93977 : 2= (94.05+ j258.4)2

(6) 2# 12 Qy:-20ult & orFf 223 1 to Sol

At node 2

20 - 12 $\frac{S}{2} = \frac{v_2 - v_0}{5} + \frac{S}{9} \frac{v_0}{-} \rightarrow \frac{20 = (S+2)v_2 + (\frac{S^2}{9} - 2)v_0}{\frac{3}{2}}$

At nod 2

$$\frac{v_2 - v_s}{s} = \frac{v_o}{g} + s v_o \longrightarrow v_2 = v_o \left(\frac{s}{g} + s^2 + 2\right) \longrightarrow (3)$$

Substituting (2) into (2) gives $20 = (s+2)(s^2 + 5/2 + 2)vo + (\frac{s^2}{2} - 2)vo = 5(s^2 + 25 + 2.5)vo$

$$v_{0} = \frac{10}{s(s^{2} + 2s)} - \frac{4}{s} + \frac{8s + c}{s^{2} + 2s + 1.5}$$

$$I_{0} = A(s^{2} + 2s + 1.5) + 8s^{2} + cs$$

5 OF ATIS 6 = 2A + C .s : constant 20 = 2.5A -> A=20/3, B=-20/3, C=-40/3

(7) $V_0 = \frac{20}{3} \left[\frac{1}{5} - \frac{5+9}{5^2+25+1^{15}} \right]$ -2.424 0.7072 (S+2)2+07072 $=\frac{2}{3}\left[\frac{1}{5}-\frac{5+2}{(5+2)^{2}+0.7072^{2}}\right]$ Taking the inverse loplace transform finally yields $v_{0}(t) = \frac{2^{\circ}}{3} \int 1 - e^{t} \cos(7072t - 2.424e^{t})$ sin 0.7072] u(t) v. Ang

Q5 !-

3º Given coupling capacitor = 80 mF VS= & SVrms Source Impedance = ZS = RS - JX1 Load impedance = ZL = RL+JX2 For maximum load transfor ZL-ZS -> RS-RL > XC - XL XC= XL > 1 = WL or $w = \frac{1}{12} = 2\pi F$ f_{LL} $f = \frac{1}{2\pi \Gamma LC} = \frac{1}{2\pi \sqrt{R^{0} \times 10^{3}}} (80 \times 10^{-9})$ F= 2.055 KHZ $P = \left[\frac{VS}{(0+Y)} \right]^2 4 = \left[\frac{S}{14} \right]^2 4 = \frac{25}{196} \cdot 4$ p= 8.52 mp

8