SUBJECT: Construction Financial Management

I.D No: 14816

30 ${ }^{\text {th }}$ June, 2020
SUBMITTED TO: Dr. Engr Zeeshan Ahad
Chairman Civil Department
IQRA UNIVERSITY PESHAWER

Problem 1: A construction company will replace an excavator after 5 years. A new one costs $\$ 250,000$. How much is the end-of-year annual uniform payment the company has to put into a bank in order to save enough money in five years' time for purchasing the equipment if the bank is offering an interest rate of 4% per annum?

Solution 1:
Principal amount $=S=\$ 250,000$
Number of periods $=\mathrm{n}=5$
Interest rate in \% per period (nominal or apparent rate) $=\mathrm{i}=4 \%=0.04$ Annual uniform payment $=\mathrm{A}=$?

Fig. 1. - Sum of $\$ 250000$ accumulated by five uniform periodic (annual) payments.
Using Formula:
$\mathrm{S}=\mathrm{A} \times\left[\left\{(1+\mathrm{i})^{\wedge} \mathrm{n}-1\right\} / \mathrm{i}\right]$
$\mathrm{A}=\mathrm{S} \times\left[\mathrm{i} /\left\{(1+\mathrm{i})^{\wedge} \mathrm{n}-1\right\}\right]$
$250000=\mathrm{A} \times\left[\left\{(1+0.04)^{\wedge} 5-1\right\} / 0.04\right]$
$250000=\mathrm{A} \times[\{1.21665-1\} / 0.04]$
$250000=\mathrm{A} \times[0.21665 / 0.04]$
$250000=\mathrm{A} \times 5.4163$
$\mathrm{~A}=250000 / 5.4163$
$\mathrm{~A}=46156.78$
$\mathrm{~A}=\$ 46157$

Therefore Annual uniform payment is $\$ 46157$.

Problem 2: A construction material company makes and sells window panels. The selling price per panel is $\$ 900$. The variable cost for making the window panels is $\$ 500$ per unit. The fixed cost is $\$ 8,000,000$. Find the BEP (break-even point)?

Solution 2 Given Data:
Selling Price per unit $=\mathrm{p}=\$ 900$
Fixed Cost $=\mathrm{FC}=\$ 8,000,000$
Number of units $=x$

Variable cost per unit $=\mathrm{v}=\$ 500$
Break-even point $=\mathrm{BEP}=$?
a) The above problem can be solved using the following table:

Cost-volume-profit analysis (or Break-even analysis				
Volume	$\mathrm{x}=18000$	$\mathrm{x}=20000$	$\mathrm{x}=22000$	$\mathrm{x}=25000$
Total Revenue	16200000	18000000	19800000	22500000
Variable Cost	9000000	10000000	11000000	12500000
Fixed Cost	8000000	8000000	8000000	8000000
Total Cost	17000000	18000000	19000000	20500000
Net Income	-800000	0	800000	2000000
	Loss	BEP	Profit	

At $x=20000$, the company is at BEP that is the company is neither making profit nor making loss. The company has to increase its production capacity more than $\mathrm{BEP}=20000$ in order to gain profit. Production less than 20000 units would be a loss to the company. Assuming maximum capacity of the company as 25000 units then the company's maximum profit is $\$ 2,000,000$.
$\mathrm{BEP} \%=[\mathrm{BEP} /$ Maximum Capacity $] \times 100$
BEP \% $=(20000 / 25000) \times 100$
BEP $\%=80 \%$

b) Mathematical Presentation:

TR $=\mathrm{a}+\mathrm{b}+\mathrm{c}+$ Profit
Total Cost (TC) $=$ Variable Cost (VC) + Fixed Cost (FC)
Where as
$\mathrm{TR}=$ total revenue
a = Direct cost
$\mathrm{b}=$ Cost of administering the company
c = Costs of marketing/advertisements
At break-even point (BEP)
TR $=\mathrm{a}+\mathrm{b}+\mathrm{c}$
$T R=T C$
TR = px
(a)
$\mathrm{TC}=\mathrm{VC}+\mathrm{FC}$
$T C=v x+F C$
(b)

Equating (a) and (b)
Px =vx +FC
Hence, at BEP, $x=F C /(p-v) \quad(c)$
Putting the values in equation (c)
$x=8000000 /(900-500)$
$\mathrm{x}=8000000 / 400$
$x=20000$ units
Therefore Break-even point (BEP) $=20000$ units
Let $\mathrm{x}=18000,20000$ and 22000

Graphical presentation - Break-even chart:

The Break-even is a graphical presentation of TR, VC, FC and TC. The Fig. 2 below shows the break-even chart of problem 2.

Fig. 2. - The break-even chart for problem 2.

