IQRA NATIONAL UNIVERSITY OF IT \& EMERGING SCIENCES PESHAWAR

MBA

Business Mathematics and Statistics
Time: 3PM
Summer Semester -Final Term
Total Marks: 50
NAME:...HAZRAT HUSSAIN
ID... 15578
Time 1Hrs:.
(Part - I)
Marks 10
Q 1
i When 3 balanced coins are tossed and X be a random variable that denotes the number of heads then $f(0)=$
(a) $1 / 8$
(b) $3 / 8$
(c) 1 (d) 0
(e) None of them
ii Let X be a continuous random variable and $f(x)=x, 0 \leq x \leq 1, f(x)=0$ otherwise, then
$E(X)=$
(a) $-1 / 3$ (b) $1 / 3$
(c) $1 / 2$ (d) $2 / 3$
(e) None of them
iii If $E(X)=2$ and $E\left(X^{2}\right)=5$, then $V(X)=$ (a) 1 (b) 2 (c) 3(d) 21 (e)None of them
iv The sum of squares of residuals for a straight line is
(a) $S=\sum Y^{2}-a \sum Y-b \sum X Y$
(b) $S=\sum Y^{2}+a \sum Y+b \sum X Y$
$S=\sum X Y+a \sum Y+b \sum X$
(d) None of above
v The value of $E(a X+b)=$ (a) $a^{2} E(X)+b$ (b) $a E(X)+b$ (c) $a^{2} E(X)$ (d) none of above
vi The variation of the Y values around the regression line is measured by

$$
\text { (a) } \sum(Y-\bar{Y})^{2} \text { (b) } \sum(Y-Y)^{2} \text { (c) } \sum(Y-\bar{Y})^{2} \text { (d) None of above }
$$

If, $P(A)=2$ and $P(A \cap B)=8$ then $P(B / A)=$ (a) 10 (b) $1 / 4$ (c) 4
(d) 2
(e) None .
viii A random variable X is normally distributed with $\mu=50, \sigma^{2}=25$ and $. x=0$ the value of standardized $z=$ (a) -10 (b) 10 (c) 1 (d) None of them
ix If a fair coin is tossed two times then the probability of at least one head appears is
(a) $1 / 4$ (b) $2 / 4$ (c) $3 / 4$ (d) None

X
If A and B are mutually exclusive events then $P(A \cup B)=$
(a) $P(A)+P(B)$ (b) $P(A)+P(B)-P(A \cap B)$
(c) $P(A) / P(A \cap B)$
(d) None

O(3)

$$
\begin{aligned}
& U=\{1,3,3,7,9,11,13,15,17,19,21\} \\
& A=\{3,6,9,12,15,18\} \\
& B=\{5,10\} \\
& C=\{3,6,9,12,15,18\}
\end{aligned}
$$

$$
(a)(A \cup B)^{c}=\left(A^{c} \cap B^{c}\right)
$$

$$
A \cup B>\{3,6,9,12,15,18\} \cup\{5,10\}
$$

$$
=\{3,5,6,9,10,12,15,18\}
$$

$$
\begin{aligned}
(A \cup B)^{c}= & 4-A \cup B \\
& \{1,3,5,7,9,11,13,15,17,19,21\}-\{3,5,6,9,10,12,18\}\} \\
& =\{1,7,11,13,17,19,21\}
\end{aligned}
$$

$$
\begin{array}{rl}
A_{2}^{E} & U-A \\
= & \{1,3,5,7,9,11,13,15,17,19,21\}-\{3,6,9,12,15,18\} \\
= & \{1,5,7,11,13,17,19,21\} \\
B^{C}= & U-B \\
& \{13,5,7,9,11,13,15,17,19,21\}-\{5,10\} \\
& \{1,3,7,9,11,13,15,17,19,2,\}
\end{array}
$$

2

$$
\begin{aligned}
& A^{C} \cap B^{C} \\
& \{1,5,7,11,13,17,19,21\} \cap\{1,3,7,9,11,13,15,17,19,2\} \\
= & \{1,7,11,13,17,19,21\}
\end{aligned}
$$

Renee $(A \cup B)^{2} A^{C} \cap B^{C}$
b)

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& B \cup C=\{5,10\} \cup\{3,6,9,12,15,18\} \\
& \quad=\{3,5,6,9,10,12,15,18\} \\
& A \cap B \cup C=\{3,6,9,12,15,18\} \cap\{3,5,6,9,10,12,15,18\} \\
& \quad 2\{3,6,9,12,15,18\} \\
& A \cap B=\{3,6,9,12,15,18\} \cap\{5,10\}=\{ \} \\
& A \cap C=\{3,6,9,12,15,18\} \cap\{3,6,9,12,15,18\} \\
& =
\end{aligned}
$$

Q15).

Mean $=\frac{\sum x}{x}=\frac{180}{10}=18$

$$
\begin{aligned}
\text { Median } & =\frac{1}{2}\left[\frac{n}{2}, \frac{n}{2}+1\right]^{n} \\
& =\frac{1}{2}\left[\frac{10}{2}, \frac{10}{2}+1\right]^{4} \\
& =\frac{1}{2}[5,6]^{n} \\
\text { Median } & =1 / 2[16,18]=\frac{16+13}{2}=\frac{34}{2}=17
\end{aligned}
$$

$$
\begin{aligned}
& \text { G.M }=\operatorname{axti} \log \frac{\sum \log x}{n} \\
& \text { G.M }=\operatorname{antilog} \frac{12.324}{10} \\
& \text { G.M }=\text { antilog } 1.2324 \\
& \text { G.M } 17.08
\end{aligned}
$$

(2) Lol $\quad f(x) \cdot \frac{3}{4}(3-x)(x-5) \quad 3 \leq x \leq 5$

$$
\begin{aligned}
\text { Now } E(x) & =\int_{-0}^{\infty} x f(x) d x \\
& =\frac{3}{4} \int_{3}^{5} x \cdot(3-x)(x-5) d x \\
& =\frac{3}{4} \int_{3}^{5}\left(-x^{3}+2 x^{2}-15 x\right) d x \\
& =\frac{3}{4}\left[-\frac{x^{4}}{4}+\frac{8 x^{3}}{3}-\frac{15 x^{2}}{2} \int_{3}^{5}\right. \\
& =\frac{3}{4}\left[\left(-\frac{625}{4}+\frac{1000}{3}-\frac{375}{2}\right)-\left(-\frac{81}{4}+\frac{216}{3}-\frac{135}{2}\right)\right] \\
& =\frac{3}{4}\left[-\frac{125}{12}+\frac{63}{4}\right]-\frac{3}{4}\left(\frac{64}{\frac{6}{4}}\right)=4
\end{aligned}
$$

Again $E\left(x^{2}\right)$. $\int_{-\infty}^{\infty} x^{2} f(x) d x$

$$
\begin{aligned}
& E\left(x^{2}\right)=\frac{3}{4} \int_{3}^{-5} x^{2}(3-x)(x-5) d x \\
& E\left(x^{2}\right)=\frac{3}{4} \int_{2}^{5}\left(-x^{4}+8 x^{3}-15 x^{2}\right) d x \\
& E\left(x^{2}\right)=\frac{3}{4}\left[-\frac{x^{5}}{5}+\frac{8 x^{4}}{4}-\left.\frac{15 x^{3}}{3}\right|_{3} ^{5}\right. \\
& E\left(x^{4}\right)=\frac{3}{4}\left[-\frac{1}{5}(3125)+2(625)-5(125)-\left\{-\frac{1}{5}(243)+2(81)-5(27)\right\}\right] \\
& =3 / 4\left[0+\frac{243}{5}-162+135\right)=\frac{3}{4}\left[\frac{108}{5}\right]=81 / 5 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-(E(x)]^{2} \\
& =\frac{81}{5}-(4)^{2}+\frac{81}{5}-16=1 / 5=0.2 \\
& S \cdot D(x)=\sqrt{0.2}=0.447
\end{aligned}
$$

(Q4) Snl.

x	x	$x y$	x
5	16	80	25
6	17	114	36
8	23	184	64
10	28	280	100
12	36	432	144
13	41	533	169
15	44	660	225
16	45	720	256
17	50	850	289
50102	19302	$12 y-185$	2021303

Regressenequatain Yon x

$$
\begin{aligned}
& \hat{y}=a+b x \quad \bar{x}-\frac{5 u}{n} \\
& b_{y / x}=\frac{n \Sigma x y-(2 x)(\Sigma y)}{n \Sigma x^{2}-(2 x)^{2}} \\
& \bar{x} \cdot \frac{102}{9}=11.33 \\
& \text { bylx }=\frac{9(3853)-(102)(302)}{69(1308)-(102)^{2}} \\
& \bar{y}=\frac{\Sigma y}{n} \cdot \frac{302}{9} \\
& \text { by/n }=\frac{34677-30804}{11772-10404} \\
& \text { by/r }-\frac{3873}{1368}=2.83 \\
& a=\bar{y}-b y \operatorname{xix} \\
& a=33.55-(2.83)(11.33) \\
& a=33.55-32.06 \\
& a \sim 1.49 \\
& \hat{y}=1.49+2.83 x
\end{aligned}
$$

The estrinated rejression $6-$ yffiaem $b=2.83$, which indicaics that the values of y increase by 2.83 unith for a unio increase in X.

$$
5 x_{2} 200
$$

