Department of Electrical Engineering
 Final Exam Assignment

Date: 27/06/2020

Course Details

Course Title: Instructor:

Digital Signal Processing
Sir pir mehar ali

Module:
Total Marks: \qquad

Student Details

Name: \qquad RAFI UD DIN \qquad Student ID:
12401 \qquad

Q1.	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation	Marks 7
			CLO
			2
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
			CLO
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform \qquad (Hint: Take inverse z-transform using partial fraction method)	Marks 6
			$\begin{gathered} \hline \text { CLO } \\ 2 \end{gathered}$
	(b)	Evaluate the inverse z- transform using the complex inversion integral	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
			$\begin{gathered} \mathrm{CLO} \\ 2 \end{gathered}$
Q. 3	(a)	A two- pole low pass filter has the system response Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the \qquad - . =-.	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
			$\begin{gathered} \text { CLO } \\ 3 \end{gathered}$

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\overline{\text { at }} \omega=4 \pi / 9$.	Marks 6
			$\begin{gathered} \text { CLO } \\ \hline \end{gathered}$
Q 4		A finite duration sequence of Length L is given as	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
	(a)	Determine the N - point DFT of this sequence for $\mathrm{N} \geq \mathrm{L}$	$\underset{2}{\mathrm{CLO}}$
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
		$1()=\{[1,2,1\}$	$\begin{gathered} \text { CLO } \\ 2 \end{gathered}$

NAME RAFI UD DIN
 ID
 12401

Page 1
QNOI
(a)

Sol: The characteristic equation

$$
\begin{gathered}
\lambda^{2}-4 \lambda+4=0 \\
\lambda=2,2 \\
y_{n}(n)=e_{1} 2^{n}+c_{2} n 2^{n}
\end{gathered}
$$

The particular solution is

$$
\begin{gathered}
y_{p}(n)=k(-1)^{n} u(n \\
k(-1)^{n} u(n)-4 k(-1)^{n-1} y(n-1)+4 k(-1)^{1-1} u(n-2)= \\
(-1)^{n} u(n)-(-1)^{1-1} 4(n-1)
\end{gathered}
$$

For $n=2 k(1+4+4) \Rightarrow 2 \Rightarrow k$
$=k=2 / 9$ total solution is

$$
y(n)=\left[c_{1} 2^{n}+c_{2} n^{2 n}+2 / 9(-1)^{n}\right] 4(n)
$$

For initial condation we have $y(0)$

$$
\begin{gathered}
y(0)=1, y=2 \text { the } \\
c_{1} \neq 2 / 9=1 \\
\Rightarrow c_{1}=7 / 9 \\
2 c_{1}+2 c_{2}-2 / 9=2
\end{gathered}
$$

$$
\Rightarrow c_{2}=1 / 3
$$

Quo
part (b)
SO: - The choratenstic equation is

$$
\begin{aligned}
& d^{2}-0.7 d+0.1=0 \\
& d=\frac{1}{2} \cdot \frac{1}{5} \\
& \quad y_{n}(\Omega)=c_{1} \frac{1^{n}}{2}+c_{2} \frac{1^{7}}{5}
\end{aligned}
$$

with $x(n)=\rho(n)$ we have

$$
\begin{gathered}
y(0)=2 \\
y(1)=0.7 y(0)=0 \Rightarrow(1)=1.4
\end{gathered}
$$

Hence $C_{1}+C_{2}=2$ and

$$
\begin{aligned}
\frac{1}{2} C_{1}+\frac{1}{5} C_{2} & =1-4=7 / 5 \\
\Rightarrow c_{1}+2 / 5 C_{2} & =14 / 5
\end{aligned}
$$

the evaluation yield

$$
\begin{aligned}
& C_{1}=10 / 3, C_{2}=-4 / 3 \\
& \left.h(n)=10 / 3(1 / 2)^{n}-4 / 3(1 / 5)^{n}\right] u(n)
\end{aligned}
$$

The set response is

$$
\begin{array}{r}
\theta(n)=\sum_{k=0}^{n} n(n-k) \\
10 / 3 \sum_{k=0}^{n}\left(\frac{1}{2}\right) n-k-4 / 3 \sum_{k=0}^{n}(1 / 5)^{n-k} \\
=10 / 3(1 / 2)^{n} \sum_{k=0}^{n} 2^{k}-4 / 3(1 / 5)^{n} \sum_{k=0}^{n} 5^{k} \\
=10 / 3\left(1 / 2\left(2^{n-1}-1\right) 4(n)-1 / 3\left(\frac{1}{5}\left(5^{n+1}-1\right)\right.\right. \\
4(n) .
\end{array}
$$

QNO2
(a):-
SO_{8}^{8}

$$
\begin{aligned}
& x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}} \\
& x(z)= \frac{1}{\left(1+2 z^{-1}\right)\left(1-z^{-1}\right)^{2}} \\
& x(z)= \frac{1}{4\left(1+2 z^{-1}\right)}+\frac{3}{4} \frac{1}{1-2 z^{-1}} \\
&+\frac{1}{2} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

By applying inverse transperm.

$$
\begin{aligned}
X(x) & =1 / 8(-1)^{x} 4(x)-3 / 8 u(x)+1 / 2 n 4(x) \\
& =\left[1 / 8(-1)^{n}+3 / 8+n / 2\right] \mu(x)
\end{aligned}
$$

Q No 2
(b) :-

SO:-
we have

$$
\begin{aligned}
x(n) & =\frac{1}{2 \pi} ; \oint_{c} \frac{z^{n-1}}{1-a z^{-1}} d z \\
& =\frac{1}{2 \pi j} \oint_{c} \frac{z^{n} d z}{z-a}
\end{aligned}
$$

Where C is the circule at radius greater then $|a|$ we shall evaluate this integral using with $f(z)=z^{n}$ we distengush 4 wo cases.

1) If $n \geq 0, f(z)$ has only zeros and hanse no poles inside C the only poles inside l_{C} is $z=a$ Here

$$
x(n)=f\left(z_{0}\right)=a^{n} \quad x \geq 0
$$

2) if $n<0 \quad f(z)=z^{n}$ has an $n^{\text {th }}$ order pole at there $z=0$ which is also inside C then there are contributions from both poles for $n=-1$ wehave

$$
\begin{aligned}
& x(-1)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{(z-a} d z \\
& =\left.\frac{1}{z-a}\right|_{2=0}+\left.\frac{1}{z}\right|_{z=9}=0
\end{aligned}
$$

$$
6
$$

if $n=-2$ we have

$$
\begin{aligned}
& x(-2)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z^{2}(z-a)} d z \\
& \quad=\left.\frac{d}{d z a}\left(\frac{1}{z-a}\right)\right|_{z=0}+\left.\frac{1}{z^{2}}\right|_{z=a}=0
\end{aligned}
$$

By countining the same way we can
show that $x(n)=0$ show that $x(n)=0$
for $n<0$ then for $x<0$ then

$$
x(n)=a^{n} u(n)
$$

QNO3 (a):-
So]:- At $\omega=0$ we have

$$
H(0)=\frac{b_{0}}{(1-p)^{2}}=1
$$

Hence $b_{0}=(1-p)^{2}$

$$
\text { At } \begin{aligned}
& \omega=\pi / 4 \\
& H(\pi / 4)=\frac{(1-P)^{2}}{\left(1-P e^{-j \pi / 4}\right)^{2}} \\
&=\frac{(1-p)^{2}}{1-p(\cos (\pi / 4)+j p \sin (\pi / 4))^{2}} \\
&=\frac{(1-p)^{2}}{1-p / \sqrt{2}+j p / \sqrt{2})^{2}} \\
&\left.=\frac{(1-P)^{4}}{\left[(1-p / \sqrt{2})^{2}\right.}+p^{2} / 2\right]^{2}=\frac{1}{2}
\end{aligned}
$$

QNo3
Part (b):-
Sol: By the filter requirments:-
poles $\quad P_{12}=r e^{t / \pi / 2} \quad$ pass band center
Zeroes $z_{12}= \pm 1 \quad$ Stop band Canter.

$$
\Rightarrow H(z)=G \frac{(z-1)(z+1)}{(z-j r)(z+j r}=G \frac{z^{2}-1}{z^{2}+\gamma^{2}}
$$

By the fitter requirement

$$
\begin{aligned}
& H\left(\frac{1}{2}\right)=G \frac{-2}{-1+2 r^{2}}=1 \\
= & 4 \frac{1-r^{2}}{2}
\end{aligned}
$$

To set 2 use $H(4 \pi / 9)=1 / \sqrt{2}$

$$
\begin{aligned}
\left|H\left(\frac{4 \pi}{9}\right)\right|^{2} & =\frac{\left(1-r^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{1+r^{4}+2 r^{2} \cos (8 \pi / 9)} \\
& =1 / 2
\end{aligned}
$$

Evaluating gives $r^{2}=0.7$ therefore

$$
H(z)=0.15 \frac{1-z^{-2}}{1+0.7 z^{-2}}
$$

Q No 4
(a)

So): The fourier transform of the serum sequin is

$$
\begin{aligned}
& x(\omega)=\sum_{x=1}^{L-1} x(x) e^{-j \omega x} \\
&= \sum_{n=1}^{L-1} e^{-j \omega \pi}=\frac{1-e^{-j \omega L}}{1-e^{-j \omega L}}= \\
&= \frac{\sin (\omega L / 2)}{\sin (\omega / 2)} e^{-j \omega(l-1) / 2} \\
& x(k)= \frac{1-e^{-j 2 \pi k L / N}}{1-e^{-j 2 \pi k / N}} \quad k=0,1 \cdots N-1 \\
&= \frac{\sin (\pi K L / N)}{\sin (\pi k / N)} e^{-j \pi k(L-1) / N}
\end{aligned}
$$

12

10. N is selected sweh -hat $N=l$ then the DFT becams

$$
x(u)= \begin{cases}l & u=0 \\ 0 & u=1,2 \cdots L-1\end{cases}
$$

thus there is only one nonzero vale in $D F T$.

Q NO ${ }^{4}(b)$
S0):- Circular convolution using circular

$$
x_{1}(n)=\{1,2,3,4\}
$$

and $x_{2}(n)=\{1,2,1,2\}$

$$
L=4, M=4
$$

length of $y(x)=L+M-1=4+4-1=7$

$$
\begin{aligned}
& x_{1}(x)=\{1,2,3,4,0,0,0\} \\
& \text { and } x_{2}(x)=\{1,2,1,2,0,0,0\} \\
& \text { for } y(0)
\end{aligned}
$$

$$
y(0)=|\times|=1
$$

for $y(1)$

For $y(2)$

$$
y(2)=|\times 1+2 \times 2+3 x|=8
$$

For y (3)

$$
y(3)=|\times 2+2 x|+3 \times 2+4 \times 1=14
$$

For $Y(4)$

15

$$
y(4)=4 \times 2+3 \times 1+2 \times 2=15
$$

$$
Y(5)=4 \times 1+3 \times 2=10
$$

For y (6)

$$
y(n)=\{1,4,8,14,15,10,8\}
$$

Linear circular convolution
For $y(0)$

$$
y(1)=2+2+6+4=14
$$

For $y(2)$

17
For $y(3)$

$$
y_{n}=\{16,14,16,14\}
$$

Result: $Y(x)=\{14,16,14,16\}$

