

Summer-20 Final Term Assignment

Subject: Operating System Concepts

 Note: Please attempt all Questions in sequence. All questions carry equal marks. (50)

Name Momin Hussain

ID 14672

Semester 4th Software
Engineering

1. Differentiate between a process and thread with example.

Process:

Process means any program is in execution. Process control block
controls the operation of any process. Process control block contains
information about processes for example Process priority, process id,
process state, CPU, register, etc. A process can creates other
processes which are known as Child Processes. Process takes more
time to terminate and it is isolated means it does not share memory with
any other process.

Thread:

Thread is the segment of a process means a process can have multiple
threads and these multiple threads are contained within a process. A
thread have 3 states: running, ready, and blocked.

Thread takes less time to terminate as compared to process and like

process threads do not isolate.

PROCESS THREAD

Processes are heavyweight

operations

Threads are lighter weight operations

Each process has its own

memory space
Threads use the memory of the process they

belong to

Inter-process communication is

slow as processes have

different memory addresses

Inter-thread communication can be faster than

inter-process communication because threads

of the same process share memory with the

process they belong to

https://www.geeksforgeeks.org/gate-notes-operating-system-process-management-introduction/
https://www.geeksforgeeks.org/gate-notes-operating-system-process-management-introduction/
https://www.geeksforgeeks.org/operarting-system-thread/
https://www.geeksforgeeks.org/operarting-system-thread/

2. List and discuss few types of thread.

Types of Thread

Threads are implemented in following two ways

User Level Threads -- User managed threads

Kernel Level Threads -- Operating System managed threads acting on kernel,

an operating system core.

User Level Threads

In this case, application manages thread management kernel is not aware of the

existence of threads. The thread library contains code for creating and

destroying threads, for passing message and data between threads, for

scheduling thread execution and for saving and restoring thread contexts. The

application begins with a single thread and begins running in that thread.

Advantages

• Thread switching does not require Kernel mode privileges.

• User level thread can run on any operating system.

• Scheduling can be application specific in the user level thread.

• User level threads are fast to create and manage.

Disadvantages

• In a typical operating system, most system calls are blocking.

• Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

• In this case, thread management done by the Kernel. There is no thread

management code in the application area. Kernel threads are supported

directly by the operating system. Any application can be programmed to

be multithreaded. All of the threads within an application are supported

within a single process.

• The Kernel maintains context information for the process as a whole and

for individuals’ threads within the process. Scheduling by the Kernel is

done on a thread basis. The Kernel performs thread creation, scheduling

and management in Kernel space. Kernel threads are generally slower to

create and manage than the user threads.

Advantages

• Kernel can simultaneously schedule multiple threads from the same

process on multiple processes.

• If one thread in a process is blocked, the Kernel can schedule another

thread of the same process.

• Kernel routines themselves can multithreaded.

Disadvantages

• Kernel threads are generally slower to create and manage than the user

threads.

• Transfer of control from one thread to another within same process

requires a mode switch to the Kernel.

 3. What is a deadlock? In what situations it occurs in an OS.

Deadlock

In an operating system, a deadlock occurs when a process or thread enters a waiting

state because a requested system resource is held by another waiting process,

which in turn is waiting for another resource held by another waiting process. If a

process is unable to change its state indefinitely because the resources requested

by it are being used by another waiting process, then the system is said to be in a

deadlock

In an operating system, a deadlock occurs when a process or thread

enters a waiting state because a requested system resource is held by

another waiting process, which in turn is waiting for another resource

held by another waiting process.

Four Necessary and Sufficient Conditions for Deadlock

• mutual exclusion. The resources involved must be unshareable;
otherwise, the processes would not be prevented from using the
resource when necessary.

• hold and wait or partial allocation. ...

• no pre-emption. ...

• resource waiting or circular wait.

Deadlocks can be avoided by avoiding at least one of the four conditions,

because all this four conditions are required simultaneously to cause

deadlock.

1. Mutual Exclusion. ...

2. Hold and Wait. ...

3. No Preemption. ...

4. Circular Wait.

Starvation is the name given to the indefinite postponement of a

process because it requires some resource before it can run, but the

resource, though available for allocation, is never allocated to this

process.

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/System_resource

4. Discuss a solution to the critical-section problem must satisfy the three

requirements

Solution to Critical Section Problem
A solution to the critical section problem must satisfy the following three conditions:

Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical

section at a given point of time.

Progress

If no process is in its critical section, and if one or more threads want to execute

their critical section then any one of these threads must be allowed to get into its

critical section.

Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit

for how many other processes can get into their critical section, before this process's

request is granted. So after the limit is reached, system must grant the process

permission to get into its critical section.

5. Differentiate between dynamic loading and dynamic linking with example.

Dynamic Loading

In dynamic loading, a routine of a program is not loaded until it is called by

the program. All routines are kept on disk in a re-locatable load format. The

main program is loaded into memory and is executed. Other routines

methods or modules are loaded on request. Dynamic loading makes better

memory space utilization and unused routines are never loaded.

Dynamic Linking

Linking is the process of collecting and combining various modules of code and

data into a executable file that can be loaded into memory and executed.

Operating system can link system level libraries to a program. When it combines

the libraries at load time, the linking is called static linking and when this linking

is done at the time of execution, it is called as dynamic linking. In static linking,

libraries linked at compile time, so program code size becomes bigger whereas

in dynamic linking libraries linked at execution time so program code size

remains smaller.

6. Write your understanding about logical Vs Physical address space?

Logical Address is generated by CPU while a program is running.

The logical address is virtual address as it does not exist physically,

therefore, it is also known as Virtual Address. This address is used as

a reference to access the physical memory location by CPU. The term

Logical Address Space is used for the set of all logical addresses

generated by a program’s perspective.

The hardware device called Memory-Management Unit is used for

mapping logical address to its corresponding physical address.

Physical Address identifies a physical location of required data in a

memory. The user never directly deals with the physical address but

can access by its corresponding logical address. The user program

generates the logical address and thinks that the program is running in

this logical address but the program needs physical memory for its

execution, therefore, the logical address must be mapped to the

physical address by MMU before they are used. The term Physical

Address Space is used for all physical addresses corresponding to the

logical addresses in a Logical address space.

Differences Between Logical and Physical Address in Operating System

1. The basic difference between Logical and physical address is that

Logical address is generated by CPU in perspective of a program

whereas the physical address is a location that exists in the memory

unit.

2. Logical Address Space is the set of all logical addresses generated

by CPU for a program whereas the set of all physical address

mapped to corresponding logical addresses is called Physical

Address Space.

3. The logical address does not exist physically in the memory whereas

physical address is a location in the memory that can be accessed

physically.

4. Identical logical addresses are generated by Compile-time and Load

time address binding methods whereas they differs from each other in

run-time address binding method. Please refer this for details.

5. The logical address is generated by the CPU while the program is
running whereas the physical address is computed by the Memory
Management Unit (MMU).

Thanks

https://www.geeksforgeeks.org/memory-management-mapping-virtual-address-physical-addresses/
https://www.geeksforgeeks.org/memory-management-mapping-virtual-address-physical-addresses/
https://www.geeksforgeeks.org/memory-management-mapping-virtual-address-physical-addresses/

