Department of Electrical Engineering

Final Assignment
Date: 23-06-2020

Course Details

Course Details		
Course Title: Electro Magnetic Field Theory	Module:	$4^{\text {th }}$ samester
Instructor: Dr.Rafiq Mansoor	Total Marks:	50

Student Details

Name: Adnan Shahzada
Student ID:
14780

Q1: Solve the following short Question	(a)	Determine the magnetic field at the center of the semicircular piece of wire with radius 0.20 m. The current carried by the semicircular of wire is 150 A.	Marks $\mathbf{1 0}$		
		(b)	A circular coil of radius $5 \times 10^{-2} \mathrm{~m}$ and with 40 turns is carrying a current of 0.25 A. Determine the magnetic field of the circular coil at the center.		Marks 10
:---					

Q 2
$P(a)$
Sol
radius of Semicircular piece of wire $=0.20 \mathrm{~m}$ current carried by semicircular piece

$$
\text { of wire }=150 \mathrm{~A}
$$

Magnetic fields is given: $B=\frac{H_{0 N I}}{2 a}$

$$
\begin{aligned}
& d B=\frac{\mu_{0} I}{4 \pi} \frac{d I \sin 0}{T^{2}} \\
& B=\frac{\mu_{0}}{4 \pi} I \int \frac{d I \times \dot{T}}{T^{2}} \\
& =\frac{\mu_{0}}{4 \pi} \frac{1}{T^{2}} \int d I \\
& =\frac{\mu_{0}}{4 \pi} \frac{I}{T^{2}} \pi=\frac{\mu_{0} I}{4 r}= \\
& =\frac{4 \pi \times 20^{-7} T \cdot m / A(150 \mathrm{~A})}{4(0.20 \mathrm{~m})} \\
& =2.4 \times 10^{-4} T \text { Ans }
\end{aligned}
$$

$Q=$
part (b)
Sol
The radius of the circular

$$
\text { coil }=5 \times 10^{-2}
$$

Number of tums of circular coil $=40$ current carried by the circular coil $=0.25 \mathrm{~A}$ Magnetic field is given as: $B=\frac{\mu_{0} N I}{2 a}$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}(40) 0.25 \mathrm{~A}}{2.50 \times 10^{-2} \mathrm{~m}} \\
& =1.2 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

Q2
part (a)
Sol Given data

$$
\begin{aligned}
& R=0.05 \mathrm{~m} \\
& I=2 a \mathrm{mp} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}
\end{aligned}
$$

Ampere's law formula is

$$
\oint \vec{B} d L=\mu_{0} I
$$

In the case of long straight wire

$$
\begin{aligned}
& \oint \overrightarrow{d l}=2 \frac{\pi}{d} R=2 \times 3.14 \times 0.05=0.314 \\
& B \oint \vec{d}=\mu_{0} I \\
& \vec{B}=\frac{4 \pi \times 10^{-7} \times 2}{0.324}=8 \times 10^{-6} \mathrm{~T} \text { Ans }
\end{aligned}
$$

Qq
port (b)
Sol (a)
first we find

$$
v_{p}=279.9 \mathrm{~V}
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& E=-\nabla v=-\frac{\partial v}{\partial p} a p-\frac{1}{p} \frac{\partial v}{\partial \theta} a \theta \\
& =-[50+150 \sin \theta] a p-[150 \cos \theta] a \theta
\end{aligned}
$$

Evaluate the above at ρ to find $E P$.

$$
\begin{aligned}
& E p=-179.9 \mathrm{ap}-75.0 \mathrm{a} \theta \mathrm{~V} / \mathrm{m} \\
& \text { Now } D=\epsilon_{0} E, \text { so } D p=-1.59 \mathrm{ap}-.664 \mathrm{ace} \mathrm{nc} / \mathrm{m}^{2} .
\end{aligned}
$$

Then $p v=\nabla \cdot D=\left(\frac{1}{p}\right) \frac{d}{d p}(p D p)+\frac{1}{p} \frac{\partial D \theta}{\partial \theta}$

$$
=\left[-\frac{1}{P}(50+150 \sin \theta] \in 0=-\frac{50}{P} \in 0<\right.
$$

At p this is $p \vee P$.

$$
p \vee p=-443 p c / m^{3}
$$

(6), 5)

Now (b)
How much lies ind the cylinder?
we will integrate pu over the volume obtain

$$
\begin{aligned}
& Q=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2}-\frac{50 \in 0}{p} p d p d \theta d z \\
& =-2 \pi(50) \operatorname{\epsilon o}(2)=-5.56 n c
\end{aligned}
$$

(b) (5) (6)

Q 3
(a)
sol
We write,

$$
\begin{aligned}
& \text { emf }=\delta E \cdot d L \\
& =\frac{d Q}{d t}=-\frac{d}{d t} \iint_{\operatorname{cop}}
\end{aligned}
$$

$$
B \cdot d_{z} d z=\frac{d}{d t}(0.3)(4)(6) \cos 5000 t
$$

Where a loop is normal is chosen positive $a b^{z}$, so that the path integral for E is taken around the positive $a \phi$ direction. Taking the derivative,
we find
$\mathrm{cmf}=-7.2(5000) \sin 5000 t$ So that

$$
\begin{aligned}
I & =\frac{e^{m f}}{R}=\frac{-36000 \sin 5000 t}{400 \times 10^{3}} \\
& =-90 \sin 5000 \mathrm{t} \mathrm{~m} \mathrm{~A}
\end{aligned}
$$

Ans

