Course Title: Instructor:	Digital Signal Processing	Module: Total Marks:	<u>6th</u> 50
	Student Details		
Name:	Muhammad waqar Hameed	Student ID:	6939

	r		
	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order difference equation	Marks 7
		()-4 (-1)+4 (-2)=()- (-1)	<u> </u>
			CLO
		To the input $() = (-1)$ (). And the initial conditions are $y(-1) = y(-2) = 0$.	2
Q1.			
	(b)	Determine the impulse response and unit step response of the systems described by the	Marks
		difference equation.	7
			CLO
		$() - \delta \mathcal{I} (-1) + \delta \mathcal{I} (-2) = 2 () - (-2)$	2
		Determine the causal signal $x(n)$ having the z-transform	
			Marks
	(a)		6
	×,	()=	CLO
		$(1 - 2^{-i})(1 - {}^{-i})^2$	2
Q2.			-
		(Hint: Take inverse z-transform using partial fraction method)	
			Marks
		Evaluate the inverse z- transform using the complex inversion integral	6
	(b)		
		1	CLO
			•
		() = 1- ⁻¹ >	2
		A two- pole low pass filter has the system response	Marks
			6
Q.3	(a)		
			CLO
		Determine the values of b ₀ and p such that the frequency response H(ω) satisfies the	3
			-

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\overline{-}$ at $\omega = 4\pi/9$.	Marks 6 CLO 3
		A finite duration sequence of Length L is given as	Marks 6
	(a)	1, 0≤≤−1	CLO 2
		()={a, ,	
		Determine the N- point DFT of this sequence for $N \ge L$	
Q 4	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 6
		$1() = \{2,1,2,1\}$	CLO 2
		$x() = (^{1}x_{2}x_{1}q)$	

Date:_____ (|) Q1 Past (a) Solution. Y(n) - 4Y(n-1) + 4Y(n-2) = 2(n) - 2(n-1)The Charactoristic equation is X=41+4=0 1=2,2 Hence Yhan C12 + C22 The Particular Solution $y_{e(n)-k(-i)u(n)}$ Substituting this solution into the diffence equation We obtain K(-1)"4(10)-4/K(-1)" 4(14-2) - (-1)" $u(n) - (-1)^{n-1} u(n-1)$ For N=2, K(1+4, 44) = 2 =) K=2 The total Solution is yen) - [e12 + C2 n2 + 2 (-1)] 4(m) From the witch Condition we obtain 2(0)-1, 2(1)-2. Then

Date:_ (2) C1+2 9 1 1 9 202-2 9 + CI $C_{2,2}$ Put in en (1) So y (n) = [2] 2" + 1/3 h21 2 [-1] 4141

Date: 131 Q1 Paret (B) Solution: The Characteristic equationis X-0.7 X+0.1=0 X=1, 1 Hence yh(n). C. In + & C. In 2(0) = 2 1(1)=0.77(0)=0->J(1)=1.4 Hence CI+C2 = 2 and $\frac{1}{2}$ CI + = 1.4 = 1.4 = 7 -) c, + 2 c2 = 14 These equation Yield $C_{1} = 10$, $C_{2} = -4$ h(w)= [1=(1=) - 4 (1=)] 4(w) The Step DesPonse is S(n): 2 h(n-k) K=0

	Date:	
-	n h-K h	
	= 10 5 (1) 4 5 12)	
	3 K=0 3 K=0	
	10(1) 521 -4117 55"	
	3 2 K=0 3 5 K=0	
	$10 \left[\frac{1}{2}\right]^{n} \left(\frac{32n+1}{2} - 1\right) \left(\frac{1}{2}\right) - \frac{1}{2} \left(\frac{1}{2}\right)^{n+1}$	
	-113(M)	
-		
I		

Date: 151 Q 2 Post (a) $\frac{\chi(z)}{1-2z'} \frac{1}{(1-z)^2}$ $\frac{1}{(1-2z')(1-z')} = A + B + (z') \\ (1-2z')(1-z') \\ (1-2z')(1-z') \\ (1-z')^{2}$ $\frac{M + lip_{1}}{1 = A(1-z') + B(1-2z')(1-z') + C(1-2z')}$ Put Z=0 1-A(1-12) to to A=4 Put 7-1 1-D+0+ (1-2) Company Z' 0 = -2A - 38 2C -8 = -2(4) - 3B-2(-1) - 0-8-38+2 6= -38 B= -2

Date: (6) then 2 X(2) - 4_ 1-2' 1-22 $(1-\bar{z}')$ APPly inverse laPlace - 4(42) u(n) - 2 (+1) uth - 4 u(n) = [4(2) 2 - n]u(n) For Casual Systen 2 Part (B) $(1-az) = \frac{1}{12} \frac{1}{2} \frac{1}{2}$ An this 1-22 =0 1- 07 220 Pole is gt For Convergence of 1(2) az1/11 and 12/2/2/al a laz'l LN 120 à

Date: ____ - (7) = & a z 120 a z X(2) = ~ (u(n))= h= -d This gives X(n) = a (11 (n) Q 3 Part las 1.0 1.0 0.8 3 I 0.4 0 n И., 0 n

Date: . (8) 10 HILW) 30 H12(w) N -u 14 O -u 3) N 2 Oslas, -n $\mathcal{B}_{\mu}(m)$ 2 - W -2 - V. 0 Chrs. Sesponse Magnifude and of (1) 20 Pole fille and (2) a Single Pole one Zero fifte 0 H.(2) - (1-a)/(1-az'), $H_1(7) = [(1-a)/2 2][(1+z')](1-az')$ Determine the value of board P Such that the frequency KerBonse'HWJ Scanned with CamScanner

Date:	- 19/			-
Satisfica	the Co	polition,	H = 0	
1HC	T11 =1			
As w-	o we have	Jæ		
-	11 (0) - 1	20-21-	=) bo = (+	-812
1 - 2)	()	- P)2		
1.9				
0.8			4	
3 0.6	2			
II 0.4		1		
0.2				
0			1	
	2	100 100	~~	_
= 10,			-	
30				
9-10	19. J. 199.			-
2-20				10
7-30				-
- 40				-
-50		_		

Date:	1 101	
	(19)	_
n		
0		
3-11	17 66 C 10 C 10 C 10 C	
00		
w-		
-10 -10	o <u>n</u> w	
Ma9. 11	1. I PI NO O	
Pildgh114	the and those destance of	
12 Simp	le high tess fiftes	
H 2 2 1 11-	$-a)/2][(1-2^{-})/(1+az)]$	_
1 aith	<u>c=0.9</u>	
Fth w= PP/	4	
	$\left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	
	$1 - Pe^{3\pi/4}$	
	$(1-P)^{-}$	
	$(1-P\cos(\pi/4) + SP \sin(\pi/4)^2)$	
Hence	$(1 - P)^{2}$	
	(1-P/ T2 + JP/ T2)2	
	$(1 - P)^{\prime}$	

Date: _____ UU Q3 Paxt B Solution: Clearly the filter must have Poks at P.2- Le and zero at Zal and Za-1 Consequently the Statem function is H(Z)= Gr (Z-1) (Z+1) (2-50)(2+38 = 6(22-1)The Jain factor is determined by equalating that the Frequency Keslowett(w) of the fifter at W2T Thus We have H(J2) 2 G 2 =1 6=1-6

Date: ____ (12)The Value of 6 is determined the eveluction H(w) at way 4T Thus we have $(4\pi)^2 = (1-8^2)^2 - 2(05(8\pi/9))$ H (47) 4 1+8+2-2 Los (8 7/4) equival Putt 1.94(1-52) 1 1.88 8 + 44 he Value of × = 0.7 Satisfies this equation. Therefore the System function $f_{6*} + he desired fifter is$ $H(z) = 0.15 - 1 - z^{2}$ $1 + 0.7z^{2}$ Its frequency scalare is illustrated Fig 10 1.7, 1.0 0.8 0.6 0-4 0.3 0 -n N -1 n

	and the second second	ini - Cuin	
Date:	- [13]		
	25		-
19			11 Jan 1
5 1	<u></u>		
3'-10			
2 -20			14
0-30		· .	- <u>k</u>
7-40			
-50 -4	<u> </u>		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
<u>c</u> -2	Ű	K W	ý ji
10 NF			the states
5 n			1 1 1 1 m
80-		<u>\</u>	1. 1. 1. C.
g-n			1.1.1.1.1
- - - - -	L	1	N
-W -W	ð :	24 10	10 1
			1-276
		nin an Ageren	a hard the start of
En			
	•		

Date: _____ 44 It Should be emphasized that the main Puspose of the foregoing methodology for designing Simple digital filter by Pole-2000 Placement is to Provide insight into the effect that Poles and Zeso have on the forglioner response Characteristic of System. A Quelle das has filter therefingtheredion. The methodology is not intended as a good method for designing diglidal filter with web-specified Passband and Stopband Characteristic. Systematic mothed for design of Sophisticated digital fifter for Practical application are discuss.

Date: (15)Q 4 (a) A finite duration sequence of length L is given a K(n) - [1. 0 ≤ N ≤ L-1 0 0 there ise Determine the N-Point DFT of this Sequence of an NUL Solution The Fourier transform of this Sequence is X(w) - Z X(n)e - Ze-1- - Juic Sin (WL/2) - Jui (L-2) 2 Sin(W/2) The magnitude of and Phase of X(w) are illustrated in Fig to Lapo. The N Roing DET of K(n) is Simply X(W) eventpled at the Set of N equelly staced foothencies wy - 2 TK/N K-0,0, N-1 Hence

Date: [16]	
X(K) - 1- ESX K/N, K=0,1 M.	
- Sin (TKUN) -JAK(L-I)M	
Sin(IK(A)	
1x(w)	
10	
8	
2. 2	٨
1	/
X- ///	//
A A A A	
- T/2	di seconda
-71	

Date:_ The Discode Farales Transform: Its Pielesties and APPRiccipion If N is is selected such that N-L. then the DFT becomes L, K=0 1(K) = 60, K=1,2,L-1 Thus there is only one monzero Untre in the DFT. This is apparent from Observedion of X(w), Since X(w) = at the Frequencies WR(27K/1, K to). The beades Should be verify that X(4) can be recovered from K(K) b) Performing an L-Point JDFT Although the Leain DFT is Sufficent to uniquely . Xelsesont the Sequence K(n) in the facturery pomain, it is apparent that it does not Provide Sufficent detail to Tield a good Picture of the Spectral Characteristic of 1((4). If we wish to have a better

Date:_ (18) batter Picture we must evaluate X(W) at more closely Spaced frequencies, Sax WK=2KM/N When NYL. Th effect, We Can View this Combutation as expending the Size of the Settience from L Paint to N Point by appending N-L Zows to the sequence K(n) that is zero Pauding. Then the N-Bing DFT Provides find interplation than the L-Point DFT Figure Provides a Plat of the N Point DFT, in megnitude and Phase for Labe N=50 and N=10 New the Spectral Characteristic of the Sequence are more Georly evident as one will conclude by Comparing these Spectra with the Continuous Spectrum XCL

	and south partition
Date: (19)	4
(x(2NK))	
10-	6
8-10 N= Jok	0
6 - 1	-
u- 10 0	9
	1
$\mathcal{O}(25)$	5.
R-I P	
	0
	III K
	-
	·+
Magnitude and those of an	
N. Koind Utl in	
(210 N. 20; 10 N= 10	

Date: 21) Q 4 Part (B) Solution: X, (h) = { 2, 1, 2, 1} Y2(h)= [], 2-3,4] X1(h) * X2(h) X, (m) - 2 S(m) + S(m-1) + 2 S(m-2) + S(m-3) X2 = S(4)+ 2 S(4-1) +3 S(4-2) +4 S(4-3) X1(h) * X2(h) = [S(m)+2S(m)+3S(m-2)+4S(m-2)] × 28(4)+8(4-1)+28(4-2)+8(4-3)] = 2S(h) + S(h-1) + 2S(h-2) + S(h-3) + 2S(h-1)+28(n-2)+48(n-3)+28(n-4)

Scanned with CamScanner